answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
2 years ago
10

A toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, take

n as the xy plane. The 4.80-kg puck has a velocity of 1.00î m/s at one instant. Eight seconds later, its velocity is (6.00î + 6.0ĵ) m/s.(a) Assuming the rocket engine exerts a constant horizontal force, find the components of the force.
Physics
1 answer:
Ad libitum [116K]2 years ago
7 0

Answer:

F=(3i+3.6j)\ N

Explanation:

It is given that,

Mass of the puck, m = 4.8 kg

Initial velocity of the puck, u=(1i+0j)\ m/s

After 8 seconds, final velocity of the puck, v=(6i+6j)\ m/s

Let the x and y component of force is given by F_x\ and\ F_y.

x component of force is given by :

F_x=m\times \dfrac{v-u}{t}

F_x=4.8\times \dfrac{6-1}{8}

F_x=3\ N

y component of force is given by :

F_y=m\times \dfrac{v-u}{t}

F_y=4.8\times \dfrac{6-0}{8}

F_y=3.6\ N

So, the component of the force is F=(3i+3.6j)\ N. Hence, this is the required solution.

You might be interested in
Which statements describe vectors? Check all that apply. -Vectors have magnitude only. -Vectors have direction only. -Vectors ha
Natali [406]

Answer:

Vectors have both magnitude and direction

Explanation:

Vectors show how strong the force in because the bigger the arrow, the stronger the force.  Also, it obviously shows direction because its an arrow.

6 0
2 years ago
Read 2 more answers
A siphon pumps water from a large reservoir to a lower tank that is initially empty. The tank also has a rounded orifice 20 ft b
trasher [3.6K]

Answer:

height of the water rise in tank is 10ft

Explanation:

Apply the bernoulli's equation between the reservoir surface (1) and siphon exit (2)

\frac{P_1}{pg} + \frac{V^2_1}{2g} + z_1= \frac{P_2}{pg} + \frac{V_2^2}{2g} +z_2

\frac{P_1}{pg} + \frac{V^2_1}{2g} +( z_1-z_2)= \frac{P_2}{pg} + \frac{V_2^2}{2g}-------(1)

substitute P_a_t_m for P_1, (P_a_t_m +pgh) for P_2

0ft/s for V₁, 20ft for (z₁ - z₂) and 32.2ft/s² for g in eqn (1)

\frac{P_1}{pg} + \frac{V^2_1}{2g} +( z_1-z_2)= \frac{P_2}{pg} + \frac{V_2^2}{2g}

\frac{P_1}{pg} + \frac{0^2_1}{2g} +( 20)= \frac{(P_a_t_m+pgh)}{pg} +\frac{V^2_2}{2\times32.2} \\\\V_2 = \sqrt{64.4(20-h)}

Applying bernoulli's equation between tank surface (3) and orifice exit (4)

\frac{P_3}{pg} + \frac{V^2_3}{2g} + z_3= \frac{P_4}{pg} + \frac{V_4^2}{2g} +z_4

substitute

P_a_t_m for P_3, P_a_t_m for P_4

0ft/s for V₃, h for z₃, 0ft for z₄, 32,2ft/s² for g

\frac{P_a_t_m}{pg} + \frac{0^2}{2g} +h=\frac{P_a_t_m}{pg} + \frac{V_4^2}{2\times32.2} +0\\\\V_4 =\sqrt{64.4h}

At equillibrium Fow rate at point 2 is equal to flow rate at point 4

Q₂ = Q₄

A₂V₂ = A₃V₃

The diameter of the orifice and the siphon are equal , hence there area should be the same

substitute A₂ for A₃

\sqrt{64.4(20-h)} for V₂

\sqrt{64.4h} for V₄

A₂V₂ = A₃V₃

A_2\sqrt{64.4(20-h)} = A_2\sqrt{64.4h}\\\\20-h=h\\\\h= 10ft

Therefore ,height of the water rise in tank is 10ft

3 0
2 years ago
Frances drew a diagram to show electromagnetic induction.
kari74 [83]

Answer:

The answer is B) Magnetic field

Explanation:

I chose it and I got it right

8 0
2 years ago
Read 2 more answers
"For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
ELEN [110]

Answer:

Explanation:

Given that:

For a first order instrument with a sensitivity of .4 mV/K

constant c  = 25 ms = 25 × 10⁻³ s

The initial temperature T_1 = 273 K

The final temperature T_2 = 473 K

The initial volume = 0.4 mV/K × 273 K = 109.2 V

The final volume =  0.4 mV/K × 473 K =  189.2 V

the instrument’s response as a function of time for a sudden temperature increase can be computed as follows:

Let consider y to be the function of time i.e y(t).

So;

y(t) = 109.2  + (189.2 - 109.2)( 1 - \mathbf{e^{-t/c}})mV

y(t) = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

Plot the response y(t) as a function of time.

The plot of y(t) as a function of time can be seen in the diagram  attached below.

What are the units for y(t)?

The unit for y(t) is mV.

Find the 90% rise time for y(t90) and the error fraction,

The 90% rise time for y(t90) is as follows:

Initially 90% of 189.2 mV = 0.9 ×  189.2 mV

=  170.28 mV

170.28 mV = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

170.28 mV - 109.2 mV = 80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

61.08 mV =  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

0.7635  mV = ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

t = 1.44 × 25  × 10⁻³ s

t = 0.036 s

t = 36 ms

The error fraction = \dfrac{189.2-170.28  }{189.2}

The error fraction = 0.1

The error fraction = 10%

8 0
2 years ago
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
Other questions:
  • A 3.0 cm object is 12.0 cm from a convex mirror that has a focal length of 20.0 cm.
    13·2 answers
  • What type of light does this light bulb produce most (i.e. at what wavelength does the spectrum have maximum intensity)?
    7·1 answer
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
    12·1 answer
  • Sea level is currently rising at 3.2 mm/yr, and scientists predict that global warming could cause a rise in sea level of 7 m if
    11·1 answer
  • The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles
    12·1 answer
  • The vector product of vectors A⃗ and B⃗ has magnitude 12.0 m2 and is in the +z-direction.Vector A⃗ has magnitude 4.0 m and is in
    12·1 answer
  • Look at the two question marks between zinc (Zn) and arsenic (As). At the time, no elements were known
    9·1 answer
  • Isabella deja caer accidentalmente un bolígrafo desde su balcón mientras celebra que resolvió satisfactoriamente un problema de
    12·1 answer
  • A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!