Time before projectile hits wall
= 88.2 m / 29.4 m/s = 3 seconds
Vertical velocity of projectile after three seconds
= 3*9.8 = 29.4 m/s
Horizontal velocity of projectile after three seconds, assuming no air resistance
= 29.4 m/s (given)
Conclusion:
velocity of projectile when it hits the wall
= < 29.4, -29.4> m/s
= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal
= 41.58 m/s east-bound at 45 degrees below horizontal.
Answer:
Power output: W=1426.9MW
Explanation:
The power output of the falls is given mainly by its change in potential energy:

The potential energy for any point can be calculated as:

If we consider the base of the falls to be the reference height, at point 2 h=0, so P2=0, and height at point 1 equals 52m:

If we replace m with the mass rate M we obtain the rate of change in potential energy over time, so the power generated:

Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.
Answer:
2.08 kg
Explanation:
Newton's second law states that the acceleration of an object is proportional to the force applied to the object, according to the equation:

where F is the force applied, m is the mass of the object and a its acceleration.
In this situation, the soccer ball is kicked with a force F=13.5 N and its acceleration is a=6.5 m/s^2, therefore its mass is
