answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
2 years ago
8

A major league baseball pitcher throws a pitch that follows these parametric equations: x(t) = 142t y(t) = –16t2 + 5t + 5. The t

ime units are seconds and the distance units are feet. The distance between the location of the pitcher and homeplate (where the batter stands) is 60.5 feet. Give EXACT answers, unless instructed otherwise. (a) Calculate the horizontal velocity of the baseball at time t; this is the function x'(t)= 142 Correct: Your answer is correct. ft/sec. (b) What is the horizontal velocity of the baseball when it passes over homeplate? 142 Correct: Your answer is correct. ft/sec (c) What is the vertical velocity of the baseball at time t; this is the function y'(t)= $$−32t+5 Correct: Your answer is correct. -32t +5 ft/sec. (d) Recall that the speed of the baseball at time t is s(t)=√ [x '(t)]2 + [y ' (t)]2 ft/sec. What is the speed of the baseball (in mph) when it passes over homeplate? $$1 Incorrect: Your answer is incorrect. (sqrt(142*142 +((-1936/142) + 5)**2)*(360/528)) mph. (e) At what time does the baseball hit the ground, assuming the batter and catcher miss the ball? $$1.1 Incorrect: Your answer is incorrect. (5+sqrt(5**2 + 320))/32 sec. (f) What is the magnitude of the angle at which the baseball hits the ground? 0.12 Incorrect: Your answer is incorrect. rad. (This is the absolute value of the angle between the tangential line to the path of the ball and the ground. Give your answer in radians to three decima
Physics
1 answer:
azamat2 years ago
6 0

Answer:

(a) x'(t)= 142

(b) 142

(c) y'(t)= -32t+5

(d) 96.8 mph

(e) 0.426 s

(f) 0.061 rad

Explanation:

Velocity is a time-derivative of position.

(a) x(t) = 142t

x'(t)= 142

(b) Since x'(t)= 142 is independent of t, it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.

(c) y(t) = - 16t^2+5t+5

y'(t)= -32t+5

(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to x(t).

x(t)= 142t = 60.5

t=\dfrac{60.5}{142}= 0.426.

In this time, the vertical velocity, y'(t) is

y(t)= -32\times0.426+5 = -8.632

The speed of the ball at thus point is s=\sqrt{142^2+(-8.632)^2}=142 ft/s

To convert this to mph, we multiply the factor 3600/5280

s=142\times\dfrac{3600}{5280}=96.8 \text{ mph}

(e) The time has been determined from (d) above.

t= 0.426

(f) This angle is given by

\theta=\tan^{-1}\dfrac{y'(t)}{x'(t)}

\theta=\tan^{-1}\dfrac{-8.632}{142}=\tan^{-1}-0.0607=3.47 (Note here we are considering the acute angle so we ignore the negative sign)

In radians, this is

\theta=3.47\times\dfrac{\pi}{180}=0.061 \text{ rad}

You might be interested in
Two movers use a rope system to lift a box to a third-story apartment. They do 1,200 J of work on the rope system, and the rope
xeze [42]
Efficiency is defined as the measure of the amount of work or energy is conserved in a certain process. At all times, in every process, work or energy is always lost or wasted due to certain interference. Not all work given is converted to useful work or energy. Thus , efficiency is calculated by dividing the energy or work output to the energy or work input then the value is multiplied by 100 to express efficiency as percentage.

Efficiency = work output / work input
Efficiency = (1020 J / 1200 J) = 85%
8 0
2 years ago
Read 2 more answers
One component of a metal sculpture consists of a solid cube with an edge of length 38.9 cm. The alloy used to make the cube has
vovangra [49]

Answer:

The mass of the cube is 420.8 kg.

Explanation:

Given that,

Length of edge = 38.9 cm

Density \rho= 7.15 \times10^{3}\ kg/m^3

We need to calculate the volume of cube

Using formula of volume

V = 38.9^3

V=0.058863\ m^3

We need to calculate the mass of the cube

Using formula of density

\rho = \dfrac{m}{V}

m = V\times\rho

m =0.058863\times7.15 \times10^{3}

m=420.8\ kg

Hence, The mass of the cube is 420.8 kg.

7 0
1 year ago
Calculate the energy released in joules when one mole of polonium-214 decays according to the following equation21484 Po -->
GuDViN [60]

Answer:

ΔE = 8.77 × 10¹¹ J

Explanation:

given,

²¹⁴₈₄Po -----> ²¹⁰₈₂Pb + 42 He

Atomic masses: Pb-210 = 209.98284 amu

Po-214 = 213.99519 amu

He-4 = 4.00260 amu

1 kg = 6.022 × 10²⁶ amu;

NA = 6.022 × 10²³ mol⁻¹

c = 2.99792458 × 10⁸ m/s

energy of molecule using equation

ΔE = Δm c²

Δm is mass difference and c is speed of light

Δm = 209.98284 + 4.00260 - 213.99519

Δm = - 0.00975 amu

1 amu = 1.66 x 10⁻²⁷ kg

- 0.00975 amu = - 0.00975 x 1.66 x 10⁻²⁷ Kg

                         = -0.016185 x 10⁻²⁷ Kg

total mass = 6.022 × 10²³ x -0.016185 x 10⁻²⁷

                 = -0.097467 x 10⁻⁴ Kg

ΔE = -(0.097467 x 10⁻⁴) (3 x 10^8)²

ΔE = - 8.77 × 10¹¹

ΔE = 8.77 × 10¹¹ J

8 0
2 years ago
If a metal wire is 4m long and a force of 5000n causes it to stretch by 1mm, what is the strain?
barxatty [35]

Answer:

2.5\cdot 10^{-4}

Explanation:

The strain is defined as the ratio of change of dimension of an object under a force:

S=\frac{\Delta L}{L_0}

where

\Delta L is the change in length of the object

L_0 is the original length of the object

In this problem, we have L_0 = 4 m and \Delta L=1 mm=0.001 m, therefore the strain is

S=\frac{\Delta L}{L_0}=\frac{0.001 m}{4 m}=2.5\cdot 10^{-4}


5 0
2 years ago
A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
rewona [7]

The kinetic energy of the small ball before the collision is

                             KE  =  (1/2) (mass) (speed)²

                                     = (1/2) (2 kg) (1.5 m/s)

                                     =    (1 kg)  (2.25 m²/s²)

                                     =        2.25 joules.

Now is a good time to review the Law of Conservation of Energy:

                     Energy is never created or destroyed. 
                     If it seems that some energy disappeared,
                     it actually had to go somewhere.
                     And if it seems like some energy magically appeared,
                     it actually had to come from somewhere.

The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision.  The large ball
and the small ball will just have to share the same 2.25 joules.

3 0
2 years ago
Other questions:
  • The United States and France both produce sweaters and caps. Suppose that a US worker can produce 50 caps per hour or 1 sweater
    9·2 answers
  • In a concrete mixer, cement, gravel, and water are mixed by tumbling action in a slowly rotating drum. if the drum spins too fas
    6·1 answer
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward a
    6·1 answer
  • An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr
    11·1 answer
  • Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h
    15·1 answer
  • A reversible heat engine, operating in a cycle, withdraws thermal energy from a high-temperature reservoir (the temperature of w
    12·1 answer
  • You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
    10·1 answer
  • Place a small object on the number line below at the position marked zero. Draw a circle around the object. Mark the center of t
    5·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!