answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
2 years ago
8

A major league baseball pitcher throws a pitch that follows these parametric equations: x(t) = 142t y(t) = –16t2 + 5t + 5. The t

ime units are seconds and the distance units are feet. The distance between the location of the pitcher and homeplate (where the batter stands) is 60.5 feet. Give EXACT answers, unless instructed otherwise. (a) Calculate the horizontal velocity of the baseball at time t; this is the function x'(t)= 142 Correct: Your answer is correct. ft/sec. (b) What is the horizontal velocity of the baseball when it passes over homeplate? 142 Correct: Your answer is correct. ft/sec (c) What is the vertical velocity of the baseball at time t; this is the function y'(t)= $$−32t+5 Correct: Your answer is correct. -32t +5 ft/sec. (d) Recall that the speed of the baseball at time t is s(t)=√ [x '(t)]2 + [y ' (t)]2 ft/sec. What is the speed of the baseball (in mph) when it passes over homeplate? $$1 Incorrect: Your answer is incorrect. (sqrt(142*142 +((-1936/142) + 5)**2)*(360/528)) mph. (e) At what time does the baseball hit the ground, assuming the batter and catcher miss the ball? $$1.1 Incorrect: Your answer is incorrect. (5+sqrt(5**2 + 320))/32 sec. (f) What is the magnitude of the angle at which the baseball hits the ground? 0.12 Incorrect: Your answer is incorrect. rad. (This is the absolute value of the angle between the tangential line to the path of the ball and the ground. Give your answer in radians to three decima
Physics
1 answer:
azamat2 years ago
6 0

Answer:

(a) x'(t)= 142

(b) 142

(c) y'(t)= -32t+5

(d) 96.8 mph

(e) 0.426 s

(f) 0.061 rad

Explanation:

Velocity is a time-derivative of position.

(a) x(t) = 142t

x'(t)= 142

(b) Since x'(t)= 142 is independent of t, it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.

(c) y(t) = - 16t^2+5t+5

y'(t)= -32t+5

(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to x(t).

x(t)= 142t = 60.5

t=\dfrac{60.5}{142}= 0.426.

In this time, the vertical velocity, y'(t) is

y(t)= -32\times0.426+5 = -8.632

The speed of the ball at thus point is s=\sqrt{142^2+(-8.632)^2}=142 ft/s

To convert this to mph, we multiply the factor 3600/5280

s=142\times\dfrac{3600}{5280}=96.8 \text{ mph}

(e) The time has been determined from (d) above.

t= 0.426

(f) This angle is given by

\theta=\tan^{-1}\dfrac{y'(t)}{x'(t)}

\theta=\tan^{-1}\dfrac{-8.632}{142}=\tan^{-1}-0.0607=3.47 (Note here we are considering the acute angle so we ignore the negative sign)

In radians, this is

\theta=3.47\times\dfrac{\pi}{180}=0.061 \text{ rad}

You might be interested in
The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
otez555 [7]

Answer:

0.647 nC

Explanation:

The force experienced by a charge due to the presence of an electric field is given by

F=qE

where

q is the charge

E is the magnitude of the electric field

In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

F=5.50\mu N = 5.50\cdot 10^{-6} N

Therefore, if the electric field magnitude is

E=8.50 kN/C = 8500 N/C

Then the charge on each antenna would be

q=\frac{F}{E}=\frac{5.50\cdot 10^{-6} N}{8500 N/C}=6.47\cdot 10^{-10} C = 0.647 nC

8 0
2 years ago
Calculate the number of moles in each of the following masses: 0.039 g of palladium 0.0073 kg of tantalum
marysya [2.9K]

Answer:

<em>The number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

Explanation:

Number of mole = reacting mass/molar mass

n = R.m/m.m......................... Equation 1

Where n = number of moles, R.m = reacting mass, m.m = molar mass.

For palladium,

R.m = 0.039 g and m.m = 106.42 g/mol

Substituting theses values into equation 1

n = 0.039/106.42

n = 0.00037 mole

For tantalum,

R.m = 0.0073 and m.m = 180.9 g/mol

Substituting these values into equation 1

n = 0.0073/180.9

n = 0.0000404 mole

<em>Therefore the number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

3 0
2 years ago
Select the volume units that are greater than one liter.
Andreas93 [3]
A.) kiloliter. 1 kiloliter = 1,000 liters
c.) megaliter. 1 megaliter =  1,000,000 liters


hope this helps
5 0
1 year ago
Read 2 more answers
A projectile is launched at an angle of 45° from the horizontal and lands 21 s later at the same height from which it was launch
irinina [24]

Answer:

a) initial speed of projectile = 145.5 m/s

b) Maximum altitude = 540 m

c) Range = 2160.6 m

d) r = (1440î + 480j) m

Explanation:

The distance at any time for the projectile is given by the relation - r² = x² + y²

where x = horizontal distance covered covered by the projectile and y = vertical distance coveredby the projectile

Let the initial velocity be u = ?

angle of projection be θ with respect to the horizontal = 45°

u = (uₓî + uᵧj) m/s

T = total time of flight = 21 s

t = any time during the flight of the projectile

a) Total time of flight = 2 uᵧ/g = (2u sin θ)/g

21 = (2u sin 45°)/9.8

u = 145.5 m/s

b) maximum altitude of the projectile = H

H = (u² sin² θ)/2g

H = (145.5² sin² 45°)/(2 × 9.8)

H = 540 m

c) According to projectile motion the maximum horizontal displacement is given by

x = R = uₓT = u cos(θ) T (since uₓ = u cos θ)

R = (145.5 cos 45°) × 21 = 2160.6 m

d) At 14 s,

x = uₓt = u cos(θ) t (since uₓ = u cos θ)

x = (145.5 cos 45°) × 14 = 1440.1 m

y = uᵧ t - 0.5gt² = [u sin(θ)] t - 0.5gt² = (145.5 sin 45°) × 14 - 0.5(9.8)(14) = 480 m

r = (1440î + 480j) m

6 0
2 years ago
The muzzle velocity of a gun is the velocity of the bullet when it leaves the barrel. The muzzle velocity of one rifle with a sh
Anvisha [2.4K]

Answer:small barrel gun

Explanation:

Given

Muzzle velocity of bullet is greater in short barrel gun as compared to larger barrel gun

acceleration is given by change in velocity with respect to time

a=\dfrac{\Delta v}{\Delta t}

In case of short barrel bullet time taken by bullet to reach its muzzle velocity is less therefore acceleration of small barrel bullet is more compared to long barrel bullet.

7 0
1 year ago
Other questions:
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
  • Rachel has an unknown sample of a radioisotope listed in the table. Using a special technique, she is able to measure the mass o
    8·2 answers
  • A steady circular __________ light means drivers must stop at a marked stop line.
    7·2 answers
  • In Paul Hewitt's book, he poses this question: "If the forces that act on a bullet and the recoiling gun from which it is fired
    8·1 answer
  • A plane traveled west for 4.0 hours and covered a distance of 4,400 kilometers. What was its velocity? 18,000 km/hr 1,800 km/hr,
    12·2 answers
  • Why are fossil fuels considered nonrenewable resources if they are still forming beneath the surface today?
    5·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • A disk is spinning about its center with a constant angular speed at first. Let the turntable spin faster and faster, with const
    10·1 answer
  • An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined
    8·1 answer
  • Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100N in one direction and Daniel with a force of 140N in
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!