answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
1 year ago
10

g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0

.03t3 (a) Find the velocity at time t (in ft/s). v(t) = 0.04t^3−0.09t^2 Correct: Your answer is correct. (b) What is the velocity after 1 second(s)? v(1) = -0.05 Correct: Your answer is correct. ft/s (c) When is the particle at rest? t = 0 Correct: Your answer is correct
Physics
1 answer:
Margarita [4]1 year ago
6 0

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

You might be interested in
A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
Roman55 [17]

Let \theta be the direction the swimmer must swim relative to east. Then her velocity relative to the water is

\vec v_{S/W}=\left(4.0\dfrac{\rm km}{\rm h}\right)(\cos\theta\,\vec\imath+\sin\theta\,\vec\jmath)

The current has velocity vector (relative to the Earth)

\vec v_{W/E}=\left(3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath

The swimmer's resultant velocity (her velocity relative to the Earth) is then

\vec v_{S/E}=\vec v_{S/W}+\vec v_{W/E}

\vec v_{S/E}=\left(\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath+\left(4.0\dfrac{\rm km}{\rm h}\right)\sin\theta\,\vec\jmath

We want the resultant vector to be pointing straight north, which means its horizontal component must be 0:

\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}=0\implies\cos\theta=-\dfrac{3.0}{4.0}\implies\theta\approx138.59^\circ

which is approximately 41º west of north.

6 0
2 years ago
A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
sasho [114]

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



8 0
2 years ago
A stone falls from rest from the top of a cliff. A second stone is thrown downward from the same height 2.7 s later with an init
Darina [25.2K]

Answer:4.05 s

Explanation:

Given

First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s

Both hit the ground at the same time

Let h be the height of cliff and it reaches after time t

h=\frac{gt^2}{2}

For second stone

h=52.92\times \left ( t-2.7\right )+\frac{g\left ( t-2.7\right )^2}{2}---2

Equating 1 &2 we get

\frac{gt^2}{2}=52.92\times \left ( t-2.7\right )+\frac{g\left ( t-2.7\right )^2}{2}

\frac{g}{2}\left ( t-t+2.7\right )\left ( 2t-2.7\right )-\left ( t-2.7\right )52.92=0

13.23\times \left ( 2t-2.7\right )-\left ( t-2.7\right )52.92=0

26.46t-35.721-52.92t+142.884=0

t=4.05 s

4 0
2 years ago
A cylinder is 0.10 m in radius and 0.20 in length. Its rotational inertia, about the cylinder axis on which it is mounted, is 0.
Bumek [7]

Answer:5 rad/s^2

Explanation:

Given

Radius of cylinder r=0.1 m

Length L=0.2 in.

Moment of inertia I=0.020 kg-m^2

Force F=1 N

We Know Torque is given by

Torque =I\alpha =F\cdot r

where \alpha =angular\ acceleration

I\alpha =F\cdot r

0.02\cdot \alpha =1\cdot 0.1

\alpha =5 rad/s^2    

5 0
2 years ago
Select the correct text in the passage. This paragraph attempts to explain the rain shadow effect, but it gets some of the facts
valentina_108 [34]

the sentence with leeward side and the sentence that has windward side both have errors.

5 0
2 years ago
Read 2 more answers
Other questions:
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m>s relative to an orbiting space shuttle
    10·1 answer
  • Which is the BEST example of refraction?
    13·2 answers
  • Trace fossils are recognized as evidence of which pre-existing life? plants plants and animals neither plants nor animals animal
    11·2 answers
  • A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintains that velocity for 10 s, and then decelerates at th
    8·1 answer
  • A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is loc
    15·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
  • Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m
    7·1 answer
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!