answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
2 years ago
9

A small cylinder rests on a circular turntable that is rotating clockwise at a constant speed. Which set of vectors gives the di

rection of the velocity v with arrow, acceleration a with arrow of the cylinder, and the net force ΣF with arrow that acts on it?
(A) 3
(B) 4
(C) 1
(D) 2

Physics
1 answer:
I am Lyosha [343]2 years ago
4 0

The question is missing the diagram. Also, the choices must have pictorial representation. So, I have attached the missing diagram and the pictorial representation of the vectors.

Answer:

The correct representation is attached below. Force and acceleration will be towards the center of rotation while the velocity will be along the tangent to the circular motion. <u>Option (D).</u>

Explanation:

From the figure, we can conclude the following points:

1. The cylinder is under a uniform circular motion as the circular table is moving at constant speed.

2. For a circular motion, velocity acts along the tangent to the circular path.

3. For a circular motion, centripetal force acts on the body that causes it move around a circular path.

4 The direction of the centripetal force is radially inward towards the center of rotation.

5. The centripetal force causes a centripetal acceleration acting on the body.

6. From Newton's second law, the net acceleration of a body is in the same direction as that of the net force acting on it. So, centripetal acceleration also acts in the radially inward direction.

Therefore, from the above conclusions, it is clear that velocity will act in the horizontal direction at the given instance of time and force and acceleration will act vertically down for the given instance.

This is shown in the picture below. The option (D).

You might be interested in
Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
kifflom [539]

Answer:

1) d

2) 5 m/s

3) 100

Explanation:

The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:

(i) x=\frac{1}{2}at^2+v_0t+x_0

The equation for velocity v and a constant acceleration a is:

(ii) v=at+v_0

1) Solve equation (ii) for acceleration a and plug the result in equation (i)

(iii) a = \frac{v -v_0}{t}

(iv) x = \frac{v-v_0}{2t}t^2+v_0t + x_0

Simplify equation (iv) and use the given values v = 0, x₀ = 0:

(v) x=-\frac{v_0}{2}t + v_0t= \frac{v_0}{2}t

2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:v=at+v_0=0.2\frac{m}{s^2} * 10s+3\frac{m}{s}=2\frac{m}{s}+3\frac{m}{s}=5\frac{m}{s}

3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

f=\frac{x(t_1)}{x(t_2)}=\frac{\frac{1}{2}at_1^2 }{\frac{1}{2}at_2^2}=\frac{t_1^2}{t_2^2}=\frac{10^2}{1^2}=\frac{100}{1}

5 0
2 years ago
In the following equations, the distance x is in meters, the time tin seconds. and the velocity v is in meters per second. whata
lyudmila [28]

Answer:

A) c₁ = m, c₂ = m/s

B) c₁ = m/s²

C) c₁ = m/s²

D) c₁ = m/s c₂ = °

E) c₁ = m/s , c₂ = /s

Explanation:

A) x = c₁ + c₂t

⇒m = m + (m/s)s (Only same units can be added)

⇒m = m

So, c₁ = m, c₂ = m/s

B) x = 0.5c₁t²

⇒m = 0.5 (m/s²)s²

⇒m = m

So, c₁ = m/s²

C) v² = 2c₁x

⇒m²/s² = 2 (m/s²)m

⇒m²/s² = m²/s²

So, c₁ = m/s²

D) x = c₁ cos(c₂)t

⇒m = (m/s) cos(°)s

⇒m = m

So, c₁ = m/s c₂ = °

E) v² = 2c₁v-(c₂x)²

⇒m²/s² = 2(m/s)(m/s)-(1/s²)(m²)

⇒m²/s² =m²/s²

So, c₁ = m/s , c₂ = /s

3 0
2 years ago
Read 2 more answers
A baseball weighs 5.19 oz. what is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher a
Stels [109]
Kinetic energy =0.5*mas*velocity^2
Joules =lg*m^2/s^2
1 miles= 1608.34 meters
1 hour= 3600 Sec
1 ounce =28.35g =0.02836 kg
What is a the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher at 96.0 mi/h?

Answer: KE=0.5m*v^2
=0.5*(5.12 o *0.02835 kg/1 ounce)* (95 miles/h*1609.34m/1 miles* 1hr/3600s^)2
131kg*m^2/s^2= 131 joules

By what factor with the kinetic energy change if the speed of the baseball is decreased to 55.0 mi/h?

Answer: KE=0.5*m*v^2
=0.5*(5.13 o*0.02835kg/1 ounce)*(55 miles/ h*1609.34m/1 mile*1 hr/3600s)^2
=44.0kg*m^2s^2=44.0 joules

131/44= 2.98, so decreased by a factor of approximately 3



7 0
1 year ago
Read 2 more answers
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where
patriot [66]

Answer:

A) i) E =α/ [2πrL(εo)]

ii) E=0

iii) E = α/(πrεo)

The graph between E and r for the 3 cases is attached to this answer ;

B) i) charge on the inner surface per unit length = - α

ii) charge per unit length on the outer surface = 2α

Explanation:

A) i) For r < a, the charge is in the cavity and takes a shape of the cylinder. Thus, applying gauss law;

EA = Q(cavity) / εo

Now, Qcavity = αL

So, E(2πrL) = αL/εo

Making E the subject of the formula, we have;

E =α/ [2πrL(εo)]

ii) For a < r < b; since the distance will be in the bulk of the conductor, therefore, inside the conductor, the electric field will be zero.

So, E=0

iii) For r > b; the total enclosed charge in the system is the difference between the net charge and the charge in the inner surface of the cylinder.

Thus, Qencl = Qnet - Qinner

Qinner will be the negative of Qnet because it should be in the opposite charge of the cavity in order for the electric field to be zero. Thus;

Qencl = αL - (-αL) = 2αL

Thus, applying gauss law;

EA = Qencl / εo

Thus, E = Qencl / Aεo

E = 2αL/Aεo

Since A = 2πrL,

E = 2αL/2πrLεo = α/(πrεo)

B) i) The charge on the cavity wall must be the opposite of the point charge. Therefore, the charge per unit length in the inner surface of the tube will be - α

ii)Net charge per length for tube is +α and there is a charge of - α on the inner surface. Thus charge per unit length on the outer surface will be = +α - (- α) = 2α

7 0
2 years ago
Sachi wants to throw a water balloon to knock over a target and win a prize. The target will only fall over if it is hit with a
Verizon [17]
3.1 the only reason i know this is cause i got it wrong 
8 0
2 years ago
Read 2 more answers
Other questions:
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • A sled sliding on a flat,icy surface with a constant velocity is best described by
    15·1 answer
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • Use this free body diagram to help you find the magnitude of the force F2 needed to keep this block in static equilibrium. WILL
    14·1 answer
  • The electric field of a sinusoidal electromagnetic wave obeys the equation E=(375V/m)cos[(1.99×107rad/m)x+(5.97×1015rad/s)t].a.
    13·1 answer
  • Find the electric field inside a hollow plastic ball of radius R that has charge Q uniformly distributed on its outer surface. G
    5·1 answer
  • A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
    10·1 answer
  • Force F1 acts on a particle and does work W1. Force F2 acts simultaneously on the particle and does work W2. The speed of the pa
    9·1 answer
  • Un tren parte de la ciudad A, a las 8 h. con una velocidad de 50 km/h, para llegar a la ciudad B a las 10 h. Allí permanece dura
    10·1 answer
  • Suppose that we use a heater to boil liquid nitrogen (N2 molecules). 4480 J of heat turns 20 g of liquid nitrogen into gas. Note
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!