answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
2 years ago
13

A resistor with resistance R and an air-gap capacitor of capacitance C are connected in series to a battery (whose strength is "

emf").
(a) What is the final charge on the positive plate of the capacitor? (Use the following as necessary: C, emf.)

Q =___________
(b) After fully charging the capacitor (so there is no current), a sheet of plastic whose dielectric constant is K is inserted into the capacitor and fills the gap. Explain why a current starts running in the circuit. You can base your explanation either on electric field or on electric potential, whichever you prefer.
This answer has not been graded yet.
(c) What is the initial current through the resistor just after inserting the sheet of plastic? (Use the following as necessary: R, K, emf. Note that the K is an upper-casek.)
I =________
(d) What is the final charge on the positive plate of the capacitor after inserting the plastic? (Use the following as necessary: C, K, emf. Note that the K is an upper-case k.)
Qnew =________
Physics
1 answer:
blsea [12.9K]2 years ago
4 0

Answer:

a) Q = C*emf

b)  Reduction in electric field strength and electric potential

c) Initial current through the resistor = emf/R

d) The final charge = K*C*emf

Explanation:

a) The resistors and capacitors are connected in series with the battery

Using Kirchoff's voltage law, sum of all voltages in the circuit is zero

Let V_{R} = Voltage dropped across the Resistor

V_{c} = Voltage dropped across the capacitor

Applying KVL;

emf - V_{R}  - V_{c} = 0\\.........................(1)

Since the connection is in series, the same current flow through the circuit

V_{R} = IR\\Q = CV_{c} \\V_{c} = Q/C

Putting V_{c} and V_{R} into equation (1)

emf - IR - Q/C = 0

At the final charge, the capacitor in fully charged, and current drops to zero due to equilibrium

I = 0A\\emf = Q/C\\Q = C* emf

b) Current starts running through the plate because as the sheet of plastic is inserted between the plates both the electric field intensity and the electric potential reduces. The charge also reduces, then current flows

c) The current through the resistor is the current through the entire circuit ( series connection)

I = I_{o} \exp(\frac{-t}{RC} )\\At time the initial time, t\\t = 0\\ I_{o} = \frac{emf}{R} \\

Putting the values of t and I₀ into the formula for I written above

I = \frac{emf}{R} \exp(0)\\I = \frac{emf}{R}

d) NB: The initial charge on the capacitor = C * emf

The final charge will be:

Q = K* Q_{initial} \\Q_{initial}  = C *emf\\Q_{final}  = KCemf

You might be interested in
A proton moves along the x-axis with vx=1.0×107m/s. As it passes the origin, what are the strength and direction of the magnetic
Sunny_sXe [5.5K]

Answer:

Magnetic field will be ZERO at the given position

Explanation:

As we know that the magnetic field due to moving charge is given as

B = \frac{\mu_0 qv sin\theta}{4\pi r^2}

so here we know that for the direction of magnetic field we will use

\hat B = \hat v \times \hat r

so we have

\hat B = \hat i \times (\hat i + 0\hat j + 0\hat k)

so magnetic field must be ZERO

So whenever charge is moving along the same direction where the position vector is given then magnetic field will be zero

3 0
1 year ago
Susie walks 3 blocks north to the local CVS store, then 4 blocks east to her grandmother’s house. She then walks 2 blocks west a
Slav-nsk [51]

Answer:

Suzie is 3 blocks north of where she started

Explanation:

Displacement is the minimum distance between the initial and final point of motion.

Here, Suzie first walks 3 blocks north. From there she walks 4 blocks east. Then 2 blocks to the east then 2 blocks north and then 2 blocks east. She covered 4 blocks east toward west. This is the same distance she covered traveling east. But she is 2 blocks north. From there she traveled a block south to the pizzeria and another block to her friends house. She covered the two block she had traveled north.

Hence, Suzie is 3 blocks north of where she started.

7 0
1 year ago
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0
Margarita [4]

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

6 0
1 year ago
Two students are looking at a brightly lit full Moon, illuminated by the reflected light from the Sun. Consider thefollowing dis
BartSMP [9]

Answer:

I agree with the student that think that moonlight is just reflected sunlight, so we will see the Sun’s absorption line spectrum.

Explanation:

Absorption spectrums occur when a white light is passed through a gas. Or simply a light from a hot source passes through a cooler gas. The moon itself is a reflection of the sun, so when it reflects the light from the sun, absorption spectrum lined can be seen. Note that it is the hot gases like hydrogen, oxygen etc in or around the sun that cause absorption spectrum.

3 0
1 year ago
Other questions:
  • Which best describes a similarity between power plants that use water as an energy source and those that use wind as an energy s
    10·2 answers
  • A satellite completes one revolution of a planet in almost exactly one hour. At the end of one hour, the satellite has traveled
    5·1 answer
  • What is the amount of displacement of a runner who runs exactly 2 laps around a 400 meter track?
    7·2 answers
  • A certain rigid aluminum container contains a liquid at a gauge pressure of P0 = 2.02 × 105 Pa at sea level where the atmospheri
    13·1 answer
  • Two soccer players, Mia and Alice, are running as Alice passes the ball to Mia. Mia is running due north with a speed of 6.00 m/
    10·1 answer
  • Anjali's plane had been flying through calm skies (no wind) with a velocity (speed and direction) vector <img src="https://tex.z
    11·1 answer
  • a worker climbs a ladder and does 8 J of work on a 2 N object. What is the distance they lift the object
    5·1 answer
  • . A girl runs and jumps horizontally off a platform 10m above a pool with a speed of 4.0m/s. As soon as she leaves the platform,
    6·1 answer
  • Two workhorses tow a barge along a straight canal. Each horse exerts a constant force of magnitude F, and the tow ropes make an
    14·1 answer
  • Although human beings have been able to fly hundreds of thousands of miles into outer space, getting inside the earth has proven
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!