The magnitude of the electrostatic force acting on a charge q is the product between the charge and the intensity of the electric field E. The magnitude of the electron charge is

(we are not interested in the sign), so the electrostatic force magnitude is
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.
We are given
the torque requirement of 97 Newton meter.
The formula of the torque is
τ = r * F * sinθ
where
τ is the torque
r = radius from the axis of rotation to the point of application.
F = force exerted
θ = the angle between the lever arm and the radius
Try to substitute the given and solve for F.
"If one increases the force on an object, its acceleration increases too because the push it feels is greater"
We have the 2nd law of Newton that relates the 3 concepts; F=m*a. We have that if the mass of an object increases (put weight in luggage), the accelearation decreases; in fact it is inversely proportional to the mass. Hence if the mass is doubled, acceleration is halved. Accelerations is proportional to force; if one doubles the force, the acceleration doubles too.
Net flux through the cylindrical surface is given as

here q = enclosed charge in the surface
so here in order to find the value of q

so now we have

so this is the total flux
now by Gauss's law we can find the electric field




<em>by above expression we can find the electric field at required position</em>