answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
1 year ago
9

A 0.50 kilogram ball is held at a height of 20 meters. What is the kinetic energy of the ball when it reaches halfway after bein

g released?
Physics
2 answers:
Nutka1998 [239]1 year ago
7 0

Answer: The kinetic energy of the ball when it reaches halfway after being released is 49 Joules.

Explanation:

Sum of potential energy and kinetic energy always remains constant while freely falling of the body.

At initial point : (when ball is at verge to fall down)

P.E+K.E=mgh+\frac{1}{2}mv^2=0.50\times 9.8m/s^2\times 20 m+\frac{1}{2}\times 0.50 kg\times (0 m/s)^2=98 Joules

At the point when ball reaches half way at height of h', h'=10 m

P.E+K.E=

=mgh'+\frac{1}{2}mv'^2=0.50\times 9.8m/s^2\times 10 m+\frac{1}{2}\times 0.50 kg\times (v' m/s)^2=49 Joules+\frac{1}{2}\times 0.50 kg\times (v' m/s)^2

P.E+K.E=98 J=49 Joules+\frac{1}{2}\times 0.50 kg\times (v' m/s)^2

K.E=\frac{1}{2}mv'^2=98 J-49 J=49 J

The kinetic energy of the ball when it reaches halfway after being released is 49 Joules.

Margarita [4]1 year ago
6 0
Potential energy at any point is (M G H). On the way down, only H changes. So halfway down, half of the potential energy remains, and the other half has turned to kinetic energy. Half of the (M G H) it had at the tpp is (0.5 x 9.8 x 10) = 49 joules.
You might be interested in
Susan and Hannah are each riding a swing. Susan has a mass of 25 kilograms, and Hannah has a mass of 30 kilograms. Susan’s swing
Charra [1.4K]

Answer:

Kinetic energy is given by:

K.E. = 0.5 m v²

Susan has mass, m = 25 kg

Velocity with which Susan moves is, v = 10 m/s

Hannah has mass, m' = 30 kg

Velocity with which Hannah moves is, v' = 8.5 m/s

<u>Kinetic energy of Susan:</u>

0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J

<u>Kinetic energy of Hannah:</u>

0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J

Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.

Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.

4 0
2 years ago
A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h
Brilliant_brown [7]

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

6 0
2 years ago
Derive an expression for the total mechanical energy of the system as the monkey reaches the top of the motion, Etop, in terms o
ipn [44]

Answer:

U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

Explanation:

Given:

- The extension in spring @ equilibrium = x m

- The spring constant = k

- The amount of distance pulled down = d

- mass of the toy = m

Find:

- The total mechanical energy E_top at the top position h_max in terms of the available variables.

Solution:

- First we need to determine the types of Energy that are in play:

- The Elastic potential Energy E_p in a spring is given:

                              E_p: 0.5 * k * (ext)

- In our case when the toy at the top most position h_max will have a net extension ext, by summing displacement of spring:

             ext = Equilibrium + distance pulled - h_max = (x + d - h_max)

Hence, the elastic potential energy will be:

                              E_p = 0.5 * k *(x + d - h_max)^2

- The gravitational potential energy E_g is given by:

                              E_g = m*g*h_max

Where, bottom most position is taken as reference (datum).

- The kinetic Energy E_k is given by:

                              E_k = 0.5*m*v_top^2

- Since we know that the maximum height is reached when velocity is zero

Hence,                   E_k = 0.5*m*0^2 = 0.

The total Energy of the system U is sum of all energies and play:

                               U = E_p + E_k + E_g

                               U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

8 0
2 years ago
If a satellite is orbiting the Earth in elliptical motion, then it will move _______________ (slowest, fastest) when its closest
AVprozaik [17]

Answer:fastest,same,slow down,opposite,slow

Explanation:

8 0
1 year ago
Investigators are exploring ways to treat milk for longer shelf life by using pulsed electric fields to destroy bacterial contam
Georgia [21]

Answer:

C = 3.77*10⁻¹⁰ F = 377 pF

Q = 1.13*10⁻⁵ C

Explanation:

Given

D = 8.0 cm = 0.08 m

d = 0.95 cm = 0.95*10⁻² m

k = 80.4  (dielectric constant of the milk)

V = 30000 V

C = ?

Q = ?

We can get the capacitance of the system applying the formula

C = k*ε₀*A / d

where

ε₀ = 8.854*10⁻¹² F/m

and   A = π*D²/4 = π*(0.08 m)²/4

⇒  A = 0.00502655 m²

then

C = (80.4)*(8.854*10⁻¹² F/m)*(0.00502655 m²) / (0.95*10⁻² m)

⇒  C = 3.77*10⁻¹⁰ F = 377 pF

Now, we use the following equation in order to obtain the charge on each plate when they are fully charged

Q = C*V

⇒  Q = (3.77*10⁻¹⁰ F)*(30000 V)

⇒  Q = 1.13*10⁻⁵ C

7 0
2 years ago
Other questions:
  • A 1.0-c point charge is 15 m from a second point charge, and the electric force on one of them due to the other is 1.0 n. what i
    9·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    10·1 answer
  • a crate is being lifted into a truck. if it is moved with a 2470n force and 3650 j of work is done , then how far is the crate b
    12·1 answer
  • 160 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabol
    15·1 answer
  • A car enters a 300-m radius horizontal curve on a rainy day when the coefficient of static friction between its tires and the ro
    7·1 answer
  • You should be extra careful during the hours of sunrise, sunset, and nighttime because
    9·1 answer
  • Why must the height of the meniscus in the graduated cylinder match the height of the water in the tub when measuring volume?
    12·1 answer
  • Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
    14·2 answers
  • Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
    12·1 answer
  • 5. A 1-kg car and a 2-kg car are both released from the top of the same hill and roll down a frictionless track. At the bottom o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!