answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
1 year ago
15

A truck is traveling down a road with a 4-percent grade at a speed of 75 mi/h when its brakes are applied to slow it down to 22.

5 mi/h. An antiskid braking system limits the braking force to a value at which the wheels of the truck are just about to slide. Knowing that the coefficient of static friction between the road and the wheels is 0.60, determine the shortest time needed for the truck to slow down.
Physics
1 answer:
kvasek [131]1 year ago
3 0

Answer:

3.964 s

Explanation:

Metric unit conversion:

1 miles = 1.6 km = 1600 m.

1 hour = 60 minutes = 3600 seconds

75 mph = 75 * 1600 / 3600 = 33.3 m/s

22.5 mph = 22.5 * 1600/3600 = 10 m/s

Let g = 9.81 m/s2

Friction is the product of coefficient and normal force, which equals to the gravity

F_f = \mu N = \mu mg

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

a = F_f / m = \mu mg / m = \mu g = 0.6 *9.81 = 5.886 m/s^2

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

t = \frac{\Delta v}{a} = \frac{33.3 - 10}{5.886} = 3.964 s

You might be interested in
One nucleus contains 31 protons and 40 neutrons another nucleus contains 31 protons and 41 neutrons what can you conclude about
Pavel [41]

They are isotopes of the same element.

5 0
2 years ago
Read 2 more answers
The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
Rasek [7]

Answer:

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

Explanation:

Statement is incomplete. Complete description is presented below:

<em>A freight train has a mass of </em>1.83\times 10^{7}\,kg<em>. The wheels of the locomotive push back on the tracks with a constant net force of </em>7.50\times 10^{5}\,N<em>, so the tracks push forward on the locomotive with a force of the same magnitude. Ignore aerodynamics and friction on the other wheels of the train. How long, in seconds, would it take to increase the speed of the train from rest to 80.0 kilometers per hour?</em>

If locomotive have a constant net force (F), measured in newtons, then acceleration (a), measured in meters per square second, must be constant and can be found by the following expression:

a = \frac{F}{m} (1)

Where m is the mass of the freight train, measured in kilograms.

If we know that F = 7.50\times 10^{5}\,N and m = 1.83\times 10^{7}\,kg, then the acceleration experimented by the train is:

a = \frac{7.50\times 10^{5}\,N}{1.83\times 10^{7}\,kg}

a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}

Now, the time taken to accelerate the freight train from rest (t), measured in seconds, is determined by the following formula:

t = \frac{v-v_{o}}{a} (2)

Where:

v - Final speed of the train, measured in meters per second.

v_{o} - Initial speed of the train, measured in meters per second.

If we know that a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}, v_{o} = 0\,\frac{m}{s} and v = 22.222\,\frac{m}{s}, the time taken by the freight train is:

t = \frac{22.222\,\frac{m}{s}-0\,\frac{m}{s}  }{4.098\times 10^{-2}\,\frac{m}{s^{2}} }

t = 542.265\,s

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

6 0
1 year ago
A free-falling golf ball strikes the ground and exerts a force on it. Which sentences are true about this situation? A golf ball
Harlamova29_29 [7]

Answer:

The ground exerts an equal force on the golf ball

Explanation:

Third's Newton Law states that:

"When an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A".

In this problem, object A is the golf ball while object B is the ground, so we can say that:

- the golf ball exerts a force on the ground

- the ground exerts an equal and opposite force on the golf ball

8 0
1 year ago
Read 2 more answers
A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a t
Semenov [28]

Answer:

a. I=2.77x10^{-8} kg*m^2

b. K=4.37 x10^{-6} N*m

Explanation:

The inertia can be find using

a.

I = m*r^2

m = 0.95 g * \frac{1 kg}{1000g}=9.5x10^{-4} kg

r=0.54 cm * \frac{1m}{100cm} =5.4x10^{-3}m

I = 9.5x10^{-4}kg*(5.4x10^{-3}m)^2

I=2.77x10^{-8} kg*m^2

now to find the torsion constant can use knowing the period of the balance

b.

T=0.5 s

T=2\pi *\sqrt{\frac{I}{K}}

Solve to K'

K = \frac{4\pi^2* I}{T^2}=\frac{4\pi^2*2.7702 kg*m^2}{(0.5s)^2}

K=4.37 x10^{-6} N*m

3 0
1 year ago
Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
Nuetrik [128]

Answer:

The amplitude is  2.3 m

The Wavelength is 8.6 m

The frequency is 0.16 Hz

The time period is 6.25 sec

The equation that governs the behavior is  Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]

Explanation:

The explanation is shown on the first uploaded image

6 0
2 years ago
Other questions:
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • A horse does 860 j of work in 420 seconds while pulling a wagon. what is the power output of the horse? round your answer to the
    12·2 answers
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • a professional baseball player can pitch a baseball with a velocity of 44.7m/s towards home plate. If a baseball weighs 1.4 N, h
    6·2 answers
  • Three disks are spinning independently on the same axle without friction. Their respective rotational inertias and angular speed
    10·2 answers
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • An uncharged 30.0-µF capacitor is connected in series with a 25.0-Ω resistor, a DC battery, and an open switch. The battery has
    7·2 answers
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • Which of these has the most kinetic energy
    5·2 answers
  • Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100N in one direction and Daniel with a force of 140N in
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!