Answer:
The acceleration of the cheetahs is 10.1 m/s²
Explanation:
Hi there!
The equation of velocity of an object moving along a straight line with constant acceleration is the following:
v = v0 + a · t
Where:
v = velocity of the object at time t.
v0 = initial velocity.
a = acceleration.
t = time
We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.
Let's convert mi/h into m/s:
50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s
Then, using the equation:
v = v0 + a · t
22.4 m/s = 0 m/s + a · 2.22 s
Solving for a:
22.4 m/s / 2.22 s = a
a = 10.1 m/s²
The acceleration of the cheetahs is 10.1 m/s²
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
Hello <span>Andijwiltbank
</span>
Question: <span>Often what one expects to see influences what is perceived in the surrounding environment. True or False?
Answer: True
Reason: What we observe about the environment decides what we believe about it and how we react.
Hope This Helps :-)
-Chris</span>
Explanation:
Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so
Ff = μs×m1×g
m1×a = μs×m1×g
a = μs×g
The applied force is given by
F = (m1 + m2)×a so
F = μs×g×(m1+m2)
Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as


