Answer:0
Explanation:
Given
circumference of circle is 2 m
Tension in the string 


In this case Force applied i.e. Tension is Perpendicular to the Displacement therefore angle between Tension and displacement is 



Answer:
90.77%
its capacity utilization rate for the month is 90.77%
Explanation:
The capacity utilisation rate can be expressed mathematically as;
Capacity utilisation rate = capacity used/Best operating level × 100%
Given;
Total Number of production time = 205hours
Production output/capacity used = 21400 units
Best operation rate = 115units/hour
Best operation output for the month of July( at best operation level )
=115units/hour × 205 hours = 23575 units
Capacity utilisation rate = 21400/23575 × 100%
= 90.77%
Answer:
A. 39.2 m/s
B. 78.4 m
Explanation:
Data obtained from the question include:
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
A. Determination of the brick's velocity.
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) =?
v = gt
v = 4 × 9.8
v = 39.2 m/s
Thus, the brick's velocity after 4 s is 39.2 m/s
B. Determination of how far the brick fall in 4 s.
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) =?
h = ½gt²
h = ½ × 9.8 × 4²
h = 4.9 × 16
h = 78.4 m
Thus, the brick fall 78.4 m during the time.
Answer:
V₂ = 1.5 m/s
Explanation:
given,
speed of the first piece = 6 m/s
speed of the third piece = 3 m/s
speed of the second fragment = ?
mass ratios = 1 : 4 : 2
fragment break fly off = 120°
α = β = γ = 120°
sin α = sin β = sin γ = 0.866
using lammi's theorem

A,B and C is momentum of the fragments

4 x V₂ = 2 x 3
V₂ = 1.5 m/s
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.