answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
1 year ago
15

What is the final speed of an object that starts from rest and accelerates uniformly at 4.0 meters per second2 over a distance o

f 8.0 meters? 1. 8.0 m/s 2. 16 m/s 3. 32 m/s 4. 64 m/s
Physics
1 answer:
jonny [76]1 year ago
4 0
Considering that the acceleration is uniform a=4 (m/s^2) we apply the equation
v^2=v0^2+2as
with zero initial speed 
v^2=2as
and we obtain the speed
v^2 =2*8*4 =64 (m/s)^2
Thus v=8 (m/s)

You might be interested in
Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual
kotegsom [21]

Answer:

The amount of heat required is H_t =  1.37 *10^{6} \ J

Explanation:

From the question we are told that

The mass of water is m_w  =  20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g

The temperature of the water before drinking is T_w  =  3.8 ^oC

The temperature of the body is T_b  =  36.6^oC

Generally the amount of heat required to move the water from its former temperature to the body temperature is

H=  m_w  *  c_w * \Delta T

Here c_w is the specific heat of water with value c_w = 4.18 J/g^oC

So

H=   5.7 *10^2 * 4.18 * (36.6 - 3.8)

=> H= 7.8 *10^{4} \  J

Generally the no of mole of sweat present mass of water is

n = \frac{m_w}{Z_s}

Here Z_w is the molar mass of sweat with value

Z_w =  18.015 g/mol

=> n = \frac{5.7 *10^2}{18.015}

=> n = 31.6 \  moles

Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

H_v  =  n  *  L_v

Here L_v is the latent heat of vaporization with value L_v  = 7 *10^{3} J/mol

=> H_v  =  31.6 * 7 *10^{3}

=> H_v  = 1.29 *10^{6} \  J

Generally the overall amount of heat energy required is

H_t =  H +  H_v

=> H_t =  7.8 *10^{4} +  1.29 *10^{6}

=> H_t =  1.37 *10^{6} \ J

4 0
2 years ago
A sound technician is testing the sound acoustics in a theatre for an upcoming music concert. He sets up speakers in different l
velikii [3]
Consertive alex dggghh
4 0
1 year ago
A rectangular loop of wire of width 10 cm and length 20 cm has a current of 2.5 A flowing through it. Two sides of the loop are
Dahasolnce [82]

Answer:

(a) 0.05 Am^2

(b) 1.85 x 10^-3 Nm

Explanation:

width, w = 10 cm = 0.1 m

length, l = 20 cm = 0.2 m

Current, i = 2.5 A

Magnetic field, B = 0.037 T

(A) Magnetic moment, M = i x A

Where, A be the area of loop

M = 2.5 x 0.1 x 0.2 = 0.05 Am^2

(B) Torque, τ = M x B x Sin 90

τ = 0.05 x 0.037 x 1

τ = 1.85 x 10^-3 Nm

4 0
2 years ago
A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg.
babymother [125]

Answer

given,

mass of the person, m = 50 Kg

length of scaffold = 6 m

mass of scaffold, M= 70 Kg

distance of person standing from one end = 1.5 m

Tension in the vertical rope = ?

now equating all the vertical forces acting in the system.

T₁ + T₂ = m g + M g

T₁ + T₂ = 50 x 9.8  + 70 x 9.8

T₁ + T₂ = 1176...........(1)

system is equilibrium so, the moment along the system will also be zero.

taking moment about rope with tension T₂.

now,

T₁ x 6 - mg x (6-1.5) - M g x 3 = 0

'3 m' is used because the weight of the scaffold pass through center of gravity.

6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3

6 T₁ = 4263

    T₁ = 710.5 N

from equation (1)

T₂ = 1176 - 710.5

 T₂ = 465.5 N

hence, T₁ = 710.5 N and T₂ = 465.5 N

4 0
2 years ago
A proton moves along the x-axis with vx=1.0×107m/s. As it passes the origin, what are the strength and direction of the magnetic
Sunny_sXe [5.5K]

Answer:

Magnetic field will be ZERO at the given position

Explanation:

As we know that the magnetic field due to moving charge is given as

B = \frac{\mu_0 qv sin\theta}{4\pi r^2}

so here we know that for the direction of magnetic field we will use

\hat B = \hat v \times \hat r

so we have

\hat B = \hat i \times (\hat i + 0\hat j + 0\hat k)

so magnetic field must be ZERO

So whenever charge is moving along the same direction where the position vector is given then magnetic field will be zero

3 0
1 year ago
Other questions:
  • A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
    9·1 answer
  • A proton is propelled at 4×106 m/s perpendicular to a uniform magnetic field. 1) If it experiences a magnetic force of 4.8×10−13
    14·1 answer
  • Why is the following situation impossible? Two identical dust particles of mass 1.00 µg are floating in empty space, far from an
    11·1 answer
  • Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d
    8·1 answer
  • To understand how the two standard ways to write the general solution to a harmonic oscillator are related.
    5·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • The amusement park ride shown above takes riders straight up a tall tower and then releases an apparatus holding seats. This app
    6·1 answer
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • an object having a core temperature of 1700 is removed from a furnace and placed in an environment having a constant temperature
    8·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!