Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally

Answer:
90.9 seconds
Explanation:
m = Mass of liquid = Volume×Density
c = Specific heat
= Change in temperature
t = Time taken
Room temperature = 75 °F
Converting to Celsius

Heat required to raise the temperature of water

Power

Efficiency of the plate

Heat required to raise the temperature of water


Time taken to heat the aceton is 90.9 seconds
Answer:
U = 1794.005 × 10⁶ J
Explanation:
Data provided;
Capacitance of the original capacitor, C = 1.27 F
Potential difference applied to the original capacitor, V = 59.9 kV
= 59.9 × 10³ V
Now,
The Potential energy (U) for the capacitor is calculated as:
Potential energy of the original capacitor, U =
× C × V²
on substituting the respective values, we get
U =
× 1.27 × ( 59.9 × 10³ )²
or
U = 1794.005 × 10⁶ J
Answer:
(b) 10 Wb
Explanation:
Given;
angle of inclination of magnetic field, θ = 30°
initial area of the plane, A₁ = 1 m²
initial magnetic flux through the plane, Φ₁ = 5.0 Wb
Magnetic flux is given as;
Φ = BACosθ
where;
B is the strength of magnetic field
A is the area of the plane
θ is the angle of inclination
Φ₁ = BA₁Cosθ
5 = B(1 x cos30)
B = 5/(cos30)
B = 5.7735 T
Now calculate the magnetic flux through a 2.0 m² portion of the same plane
Φ₂ = BA₂Cosθ
Φ₂ = 5.7735 x 2 x cos30
Φ₂ = 10 Wb
Therefore, the magnetic flux through a 2.0 m² portion of the same plane is is 10 Wb.
Option "b"
D:the electrons from being attracted to the grid instead of the anode