answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
2 years ago
12

A 10.0 cm3 sample of copper has a mass of 89.6

Physics
1 answer:
Romashka-Z-Leto [24]2 years ago
4 0
Density is mass divides by volume, so
89.6g / 10cm^3 =8.96g /cm^3

*cm^3 is a standard unit of volume*
You might be interested in
If you have to apply 40n of force on a crowbar to lift a rock that weights 400n, what is the actual mechanical advantage of the
Mrrafil [7]
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:
MA= \frac{F_{out}}{F_{in}}
For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
MA= \frac{400 N}{40 N}=10
3 0
2 years ago
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
faltersainse [42]

Answer:

20 rad/s

Explanation:

mass, m = 12 kg

radius, r = 0.250 m

Moment of inertia of cylinder, I = 1/2 mr²

I = 0.5 x 12 x 0.250 x 0.250 = 0.375 kgm^2

Work done = Change in kinetic energy

Initial K = 0

Final K = 1/2 Iω²

W = 1/2 Iω²

ω² = 2W/ I = 2 x 75 / (0.375)

ω = 20 rad/s

Thus, the final angular velocity is 20 rad/s .

8 0
2 years ago
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
2 years ago
When a car drives along a "washboard" road, the regular bumps cause the wheels to oscillate on the springs. (What actually oscil
marishachu [46]

Answer:

a) 40,000 N/m

b) f = 6.37 Hz

c) v = 4,8 m/s

Explanation:

part a)

First in order to estimate the spring constant k, we need to know the expression or formula to use in this case:

k = ΔF / Δx

Where:

ΔF: force that the men puts in the car, in this case, the weight.

Δx: the sinking of the car, which is 2 cm or 0.02 m.

With this data, and knowing that there are four mens, replace the data in the above formula:

W = 80 * 10 = 800 N

This is the weight for 1 man, so the 4 men together would be:

W = 800 * 4 = 3200 N

So, replacing this data in the formula:

k = 3200 / 0.02 = 160,000 N/m

This means that one spring will be:

k' = 160,000 / 4 = 40,000 N/m

b) An axle and two wheels has a mass of 50 kg, so we can assume they have a parallel connection to the car. If this is true, then:

k^n = 2k

To get the frequency, we need to know the angular speed of the car with the following expression:

wo = √k^n / M

M: mass of the wheel and axle, which is 50 kg

k = 40,000 N/m

Replacing the data:

wo = √2 * 40,000 / 50 = 40 rad/s

And the frequency:

f = wo/2π

f = 40 / 2π = 6.37 Hz

c) finally for the speed, we have the time and the distance, so:

V = x * t

The only way to hit bumps at this frequency, is covering the gaps of bumping, about 6 times per second so:

x: distance of 80 cm or 0.8 m

V = 0.8 * 6 =

V = 4.8 m/s

5 0
2 years ago
Other questions:
  • Examine the circuit. Pretend you are an electron flowing through this circuit and you are with a group of other electrons. Sudde
    14·2 answers
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
    11·2 answers
  • You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
    12·1 answer
  • If a magnet is broken into two pieces, what happens to the magnetic poles? One piece will have a north pole, while the other pie
    15·2 answers
  • Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
    10·1 answer
  • A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic
    12·1 answer
  • Find the electric field inside a hollow plastic ball of radius R that has charge Q uniformly distributed on its outer surface. G
    5·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
  • A rabbit is trying to cross the street. Its velocity v as a function of time t is given in the graph below where
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!