Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer: B. Current x delivered 6.3 C more then Y
Explanation:
Answer:
When reviewing the results, the correct one is C
Explanation:
The right hand rule is widely useful in knowing the direction of force in a maganto field,
The ruler sets the thumb in the direction of the positive particle, the fingers extended in the direction of the magnetic field, and the palm in the direction of the force.
Let's apply this to our exercise.
The thumb that is the speed goes in the negative direction of the axis,
The two extended that the magnetic field look negative x,
The span points entered the dear sheet the negative the Z axis
When reviewing the results, the correct one is C
Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC
Answer:
the required mass flow rate is 49484.37 kg/s
Explanation:
Given the data in the question;
we first determine the relation for mass flow rate of water that passes through the turbine;
so the relation for net work on the turbine due to the change in potential energy considering 100% efficiency is;
= m ( Δ P.E )
so we substitute (gh) for ( Δ P.E );
= m (gh)
m =
/ gh
so we substitute our given values into the equation
m = 100 MW / ( 9.81 m/s²) × 206 m
m = ( 100 MW × 10⁶W/MW) / ( 9.81 m/s²) × 206 m
m = 10 × 10⁷ / 2020.86
m = 49484.37 kg/s
Therefore, the required mass flow rate is 49484.37 kg/s