The outlaw that was <span>executed by hanging "in the spring of '25" is identified as the HIGHWAYMAN.
This is one of the characters in the song, "American Remains", sang by The Highwaymen. The group consisted of </span><span>Johnny Cash, Waylon Jennings, Willie Nelson and Kris Kristofferson. Other characters in the song were a sailor, a dam builder, and a pilot of a starship.
</span>
This is the first stanza of the song:
"I was a highwayman. Along the coach roads I did ride
<span>With sword and pistol by my side </span>
<span>Many a young maid lost her baubles to my trade </span>
<span>Many a soldier shed his lifeblood on my blade </span>
<span>The b*stards hung me in the spring of twenty-five </span>
<span>But I am still alive."</span>
The correct answer is Option C) Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
As the coefficient of absorption would define the energy present in the reflected wave, the material C has the highest percentage of absorption i.e. 62% and would be best suitable to make a sound proof room.
We can solve the problem by using the law of conservation of energy.
Using the ground as reference point, the mechanical energy of the brick when it is at 5 m from the ground is just potential energy (because the brick is initially at rest, so it doesn't have kinetic energy):

when the brick is at h'=3 m from the ground, its mechanical energy is now sum of kinetic energy and potential energy:

where v is the velocity of the brick. Since E is conserved, it must be equal to the initial energy (98.1 J), so we can solve this equation to find v:
Answer:
Tension in the string will increase
Explanation:
As we know that tension in the string at any angle with the vertical is given as

now we have

also we know that
angular speed of the stone is directly depending on the time period of the motion
so it is given as

since the frequency of the revolution is increased from n = 1 rev/s to 2 rev/s
so the angular speed would be doubled
So here we can say that
tension in the string will increase when we will increase the frequency of revolution.
Answer:
1 angstrom = 0.1nm
5000 angstrom = 5000/1 × 0.1nm
<h3>= 500nm</h3>

5000 angstrom = 5000 × 1 × 10^-10
<h3>= 5 × 10^-7 m</h3>
Hope this helps you