Answer:
Fc = 7.14N
Explanation:
First of all, let's convert everything to the same unit system:
m = 0.0031kg R = 13.1cm * 1m / 100cm = 0.131m
ω = 50000 rev/min * 1rev /( 2π rad ) * 1min / 60s = 132.63 rad/s
Now we can calculate centripetal force as:

Replacing the values we get the answer:
Fc = 7.14N
<u>Answer:</u>
Option: D. Gravity is pulling the crash test dummy in the direction the car is moving.
<u>Explanation:
</u>
When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion because the gravity is pulling the crash test dummy in the direction the car is moving.
Basically when the car is starting, the person inside is in static position and the car is going to move. So it is putting a force on the person to move on the same speed. But as the person is sitting static hence gravity is pulling him behind from moving. Hence, The dummy appears to be pressed backward.
A. a child gently swinging on a swing at small angles all the time
Answer:
<h3>The answer is 4.53 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 62 g = 0.062 kg
velocity = 73 m/s
We have
momentum = 0.062 × 73 = 4.526
We have the final answer as
<h3>4.53 kgm/s</h3>
Hope this helps you
Answer:
The initial velocity of the water from the tank is 5.42 m/s
Explanation:
By applying Bernoulli equation between point 1 and 2

At the point 1
P₁=0 ( Gauge pressure)
V₁= 0 m/s
Z₁=3 m
At point 2
P₂=0 ( Gauge pressure)
Z₂= 0 m/s

Now by putting the values




V₂= 5.42 m/s
The initial velocity of the water from the tank is 5.42 m/s