This question is incomplete
Complete Question
Three equal point charges are held in place as shown in the figure below
If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
A) F1=2F2
B) F1=3F2
C) F1=4F2
D) F1=9F2
Answer:
D) F1=9F2
Explanation:
We are told in the question that there are three equal point charges.
q, Q1, Q2 ,
q = Q1 = Q2
From the diagram we see the distance between the points d
q to Q1 = d
Q1 to Q2 = nd
Assuming n = 2
= 2 × d = 2d
Sum of the two distances = d + 2d = 3d
F1 is the force on q due to Q1 and
F2 is the force on q due to Q2,
Since we have 3 equal point charges and a total sum of distance which is 3d
Hence,
F1 = 9F2
Answer:
2.39 revolutions
Explanation:
As she jumps off the platform horizontally at a speed of 10m/s, the gravity is the only thing that affects her motion vertically. Let g = 10m/s2, the time it takes for her to fall 10m to water is




Knowing the time it takes to fall to the pool, we calculate the angular distance that she would make at a constant acceleration of 15 rad/s2:


As each revolution is 2π, the total number of revolution that she could make is: 15 / 2π = 2.39 rev
Answer:
Please find the answer in the explanation
Explanation:
Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.
Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.
We can therefore conclude that the upper plate, is positively charged
B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC
Answer:
Explanation:
The answer is electric field intensity. Electric field intensity is the force per unit positive charge which the charge exerts at any point.
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at
