To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
8.67807 N
34.7123 N
Explanation:
m = Mass of shark = 92 kg
= Density of seawater = 1030 kg/m³
= Density of freshwater = 1000 kg/m³
= Density of shark = 1040 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Net force on the fin is (seawater)

The lift force required in seawater is 8.67807 N
Net force on the fin is (freshwater)

The lift force required in a river is 34.7123 N
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.
Answer:
T = 570 N
Explanation:
Given that,
The gravitational force acting on a bucket of water = 525 N
Net force in the Y direction is 45 N
We need to find the magnitude of the force of tension. It can be calculated as :
45 = T - 525
T = 525 + 45
T = 570 N
Hence, the force of tension is 570 N.