Answer:
(a) Maximum current through resistor is 1.43 A
(b) Maximum charge capacitor receives is
.
Explanation:
(a)
In an RC (resistor-capacitor) DC circuit, when charging, the current at any time, <em>t</em>, is given by

Here,
is the maximum current and <em>τ</em> represents time constant which is given by RC (the product of the resistance and capacitance).
The maximum current is given by

<em>V</em> is the emf of the battery and
is the effective resistance.
In this question,
= 10.0 Ω + 25.0 Ω = 35.0 Ω

(b) The maximum charge is given
<em>Q</em> = <em>CV</em>
where <em>C</em> is the capacitance of the capacitor

Answer:
Explanation:
A )
The ball floats with half of it exposed above the water level . So it must have density half that of water . In other words its density must have been 500 kg / m³
B )
Tension in the ball will be equal to net force acting on the ball
Net force on the ball = buoyant force - weight .
4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1000 - 893 )
= 40.65 x 10⁻⁶ N .
C )Tension in the 3 rd ball will be equal to net force acting on the ball
Net force on the ball = weight - buoyant force
= 4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1320 - 1000 )
= 121.6 x 10⁻⁶ N .
The horizontal component is calculated as:
Vhorizontal = V · cos(angle)
In your case Vhoriontal = 16 · cos(40) = 12.3 m/s
Answer: 12.3 m/s
Answer:
B.It is a satellite that collects data about rain and snow
C.Its orbit covers 90 percent of Earth’s surface
F.The sensors measure microwaves
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.