Answer:
3311N
Explanation:
r = radius = 600m
V = speed = 150m/s
Mass = weight = 70kg
The weight of pilot when calculated due to circular motion
W = tv
Fv = mv²/r
Fv = 70x150²/600
Fv = 79x22500/600
= 15750000/600
= 2625N
Real Weight of the pilot = m x g
= 70 x 9.8
= 686N
The apparent Weight is calculated by
Mv²/r + mg
= 2625N + 686N
= 3311 N
Therefore the apparent Weight is 3311N
So the equation for angular velocity is
Omega = 2(3.14)/T
Where T is the total period in which the cylinder completes one revolution.
In order to find T, the tangential velocity is
V = 2(3.14)r/T
When calculated, I got V = 3.14
When you enter that into the angular velocity equation, you should get 2m/s
Answer:
The speed is
.
(a) is correct option.
Explanation:
Given that,
Potential difference 
Speed 
If it were accelerated instead
Potential difference 
We need to calculate the speed
Using formula of initial work done on proton

We know that,


Put the value into the formula

....(I)
If it were accelerated instead through a potential difference of
, then it would gain a speed will be given as :
Using an above formula,

Put the value of 



Hence, The speed is
.
Answer:
C. Between North and West
Explanation:
Since all have equal masses and the red ball and green ball are moving in south and east direction, the blue ball would most likely be moving between the north and West direction.
Divide the force given by mass and you will find the acceleration of the object :-
F = m × a
3.63 = 18.15 × a
3.63 = 18.15a
a = 3.63/18.15
a = 0.2 m/s^2
hope it helps!