Answer:
Option d)
Solution:
As per the question:
Work done by farm hand, 
Force exerted, F' = 310 N
Angle, 
Now,
The component of force acting horizontally is F'cos
Also, we know that the work done is the dot or scalar product of force and the displacement in the direction of the force acting on an object.
Thus


d = 3.406 m = 3.4 m
Using the given formula with v0=56 ft/s and h=40 ft
h = -16t2 + v0t
40 = -16t2 + 56t
16t2 - 56t + 40 = 0
Solving the quadratic equation:
t= (-b+/-(b^2-4ac)^1/2)/2a = (56+/-((-56)^2-4*16*40)^1/2)/2*16 = (56 +/- 24) / 32
We have two possible solutions
t1 = (56+24)/32 = 2.5
t2 = (56-24)/32 = 1
So initially the ball reach a height of 40 ft in 1 second.
By wave particle duality.
Wavelength , λ = h / mv
where h = Planck's constant = 6.63 * 10⁻³⁴ Js, m = mass in kg, v = velocity in m/s.
m = 1kg, v = 4.5 m/s
λ = h / mv
λ = (6.63 * 10⁻³⁴) /(1*4.5)
λ ≈ 1.473 * 10⁻³⁴ m
Option D.
Answer:
Vectors have both magnitude and direction
Explanation:
Vectors show how strong the force in because the bigger the arrow, the stronger the force. Also, it obviously shows direction because its an arrow.
Answer:
1. The force of the shelf holding the book up.
Explanation:
The free body diagram of the book is as follows:
1 - The weight of the book towards downwards
2 - The normal force that the shelf exerts on the book towards upwards.
Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.