Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at

Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision
hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)
<u>Answer:</u>
Cannonball will be in flight before it hits the ground for 2.02 seconds
<u>Explanation:</u>
Initial height from ground = 20 meter.
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of body in vertical direction = 0 m/s, acceleration = 9.8
, we need to calculate time when s = 20 meter.
Substituting

So it will take 2.02 seconds to reach ground.