answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
2 years ago
7

Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2

0 grams, and its density is 7.87 g/cm3. What’s the larger cube’s volume?
Physics
1 answer:
liubo4ka [24]2 years ago
8 0

Answer:

The volume of the larger cube is 5.08 g/cm³.

Explanation:

Given that,

Mass of smaller cube = 20 g

Density of smaller cube \rho= 7.87 g/cm^2

Dylan has two cubes of iron.

The larger cube has twice the mass of the smaller cube.

M_{l}=2m_{s}

Density is same for both cubes because both cubes are same material.

The density is equal to the mass divided by the volume.

\rho=\dfrac{m}{V}

V=\dfrac{m}{\rho}

Where, V = volume

m = mass

\rho=density

We need to calculate the volume of smaller mass

The volume of smaller mass

V_{s}=\dfrac{m_{s}}{\rho_{s}}

V_{s}=\dfrac{20}{7.87}

V_{s}=2.54\ cm^3

Now, We need to calculate the volume of large cube

V_{l}=\dfrac{m_{l}}{\rho_{l}}

V_{l}=\dfrac{2\times20}{7.87}

V_{l}=5.08\ g/cm^3

Hence, The volume of the larger cube is 5.08 g/cm³.

You might be interested in
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
Svetllana [295]

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

8 0
2 years ago
Consider as a system the gas in a vertical cylinder; the cylinder is fitted with a piston on which a number of small weights are
Amiraneli [1.4K]

Answer:

Explanation:

a ) At constant pressure , work done = P x Δ V

= 200 x 10³ x ( .1 - .04 )

= 12 x 10³ J .

b )

At constant temperature work done

= n RT ln v₂ / v₁

= PV ln v₂ / v₁

= 200 x 10³ x .04 ln .1 / .04

8 x 10³ x .916

= 7.33 x 10³ J .

5 0
2 years ago
In a closed system, the loss of momentum of one object_____ the gain in momentum of another object.
densk [106]

In a closed system, the loss of momentum of one object  is same as________ the gain in momentum of another object

according to law of conservation of momentum, total momentum before and after collision in a closed system in absence of any net external force, remains conserved . that is

total momentum before collision = total momentum after collision

P₁ + P₂ = P'₁ + P'₂

where P₁ and P₂ are momentum before collision for object 1 and object 2 respectively.

P'₁ - P₁  = - (P'₂ -  P₂)

so clearly gain in momentum of one object is same as the loss of momentum of other object

6 0
2 years ago
What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
andrew11 [14]

Answer:

Explanation:

The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.

From the given  question, we are to determine the direction of the magnetic field bnet at a point A.

Also, having the notion that  the currents in the two wires have equal magnitudes, Then:

\bar{B_{net}} = \bar{B_1} + \bar{B_2}

\bar{B_{net}} = \frac{\mu_oI}{2 \pi r } \bar {k}+ \frac{\mu_oI}{2 \pi r } \bar {k}

\bar{B_{net}} = \frac{2 \mu_oI}{2 \pi r } \bar {k} \ out

Thus; \bar{B_{net}} points out of the screen at A.

6 0
2 years ago
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
Other questions:
  • The weight of a metal bracelet is measured to be 0.100 N in air and 0.092 N when immersed in water. Find its density
    12·1 answer
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
    13·1 answer
  • When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path
    7·1 answer
  • In a game of egg-toss, you and a partner are throwing an egg back and forth trying not to break it. Given your knowledge of mome
    8·1 answer
  • Would an increase in pressure favor the formation of ozone or of oxygen?
    5·1 answer
  • A cartridge electrical heater is shaped as a cylinder of length L = 200 mm and outer diameter D = 20 mm. Under normal operating
    10·1 answer
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • An ideally efficient heat pump delivers 1000 J of heat to room air at 300 K. If it extracted heat from 260 K outdoor air, how mu
    10·1 answer
  • When 999mm is added to 100m ______ is the result​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!