answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
2 years ago
15

What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22

.0ºC . The person has a normal skin temperature of 33.0ºC and a surface area of 1.50 m2. The emissivity of skin is 0.97 in the infrared, where the radiation takes place.
Physics
1 answer:
SIZIF [17.4K]2 years ago
3 0

Answer:

5.45\times 10^{-4} W

Explanation:

T_{r} = Temperature of the room = 22.0 °C = 22 + 273 = 295 K

T_{s} = Temperature of the skin = 33.0 °C = 33 + 273 = 306 K

A = Surface area = 1.50 m²

\epsilon = emissivity = 0.97

\sigma = Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴

Rate of heat transfer is given as

R = \epsilon \sigma A (T_{s}^{2} - T_{r}^{2})

R = (0.97)(5.67\times 10^{-8}) (1.50) ((306)^{2} - (295)^{2})

R = 5.45\times 10^{-4} W

You might be interested in
A car drives around a racetrack for 30 seconds. what do you need to know to calculate the average velocity of the car?
boyakko [2]
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
8 0
1 year ago
Read 2 more answers
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
1 year ago
Read 2 more answers
If two waves with identical crests and troughs meet, what is happening? The wave is reflecting. Constructive interference is occ
Kazeer [188]
The correct answer would be that destructive interference is happening. In this interference, the crest of a wave meets a trough of another wave resulting to an amplitude that is lower. The opposite is called the constructive interference. Hope this answers the question.
7 0
1 year ago
Read 2 more answers
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
1 year ago
An electric clock is hanging on a wall. As you are watching the second hand rotate, the clock's battery stops functioning, and t
Setler [38]

Answer:

B. W is positive and a is negative

Explanation:

As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have

initial angular velocity is termed as positive angular velocity

\omega = positive

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed

so we will have

\alpha = negative

so here correct answer is

B. W is positive and a is negative

8 0
1 year ago
Other questions:
  • a bullet of mass 4g when fired with a velocity of 50m/s can enter a wall upto a depth of 10cm how much will be the average resis
    6·1 answer
  • A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity?
    12·2 answers
  • Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
    14·1 answer
  • You place your hands over a steaming bowl of soup to warm them. Which type of heat transfer are you experiencing?
    10·2 answers
  • Two tiny particles having charges 20.0 μC and 8.00 μC are separated by a distance of 20.0 cm What are the magnitude and directio
    8·1 answer
  • A rock is thrown straight up with an initial velocity of 19.6 m/s. What time interval elapses between the rock’s being thrown an
    14·2 answers
  • A 50-kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the power output for this rapid start?
    12·1 answer
  • Air at 27 ºC and 5 atm is throttled by a valve to 1 atm. If the valve is adiabatic and the change in kinetic energy is negligibl
    15·1 answer
  • A 1.2-m radius cylindrical region contains a uniform electric field along the cylinder axis. It is increasing uniformly with tim
    11·1 answer
  • (b) The refractive index of the glass of the prism is 1.49. The ray EF is refracted at F. Use
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!