answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
2 years ago
15

What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22

.0ºC . The person has a normal skin temperature of 33.0ºC and a surface area of 1.50 m2. The emissivity of skin is 0.97 in the infrared, where the radiation takes place.
Physics
1 answer:
SIZIF [17.4K]2 years ago
3 0

Answer:

5.45\times 10^{-4} W

Explanation:

T_{r} = Temperature of the room = 22.0 °C = 22 + 273 = 295 K

T_{s} = Temperature of the skin = 33.0 °C = 33 + 273 = 306 K

A = Surface area = 1.50 m²

\epsilon = emissivity = 0.97

\sigma = Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴

Rate of heat transfer is given as

R = \epsilon \sigma A (T_{s}^{2} - T_{r}^{2})

R = (0.97)(5.67\times 10^{-8}) (1.50) ((306)^{2} - (295)^{2})

R = 5.45\times 10^{-4} W

You might be interested in
A mass is tied to a string and swung in a horizontal circle with a constant angular speed. show answer No Attempt If this speed
Liono4ka [1.6K]

Answer:

The tension in the string is quadrupled i.e. increased by a factor of 4.

Explanation:

The tension in the string is the centripetal force. This force is given by

F = \dfrac{mv^2}{r}

m is the mass, v is the velocity and r is the radius.

It follows that F \propto v^2, provided m and r are constant.

When v is doubled, the new force, F_1, is

F_1 = \dfrac{m(2v)^2}{r} = \dfrac{4mv^2}{r} = 4\dfrac{mv^2}{r} = 4F

Hence, the tension in the string is quadrupled.

8 0
2 years ago
(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion betwe
castortr0y [4]

Answer:

(a) coefficient of friction = 0.451

This was calculated by the application of energy conservation principle (the total sum of energy in a closed system is conserved)

(b) No, it comes to a stop 5.35m short of point B. This is so because the spring on expanding only does a work of 43 J on the block which is not enough to meet up the workdone of 398 J against friction.

Explanation:

The detailed step by step solution to this problems can be found in the attachment below. The solution for part (a) was divided into two: the motion of the body from point A to point B and from point B to point C. The total energy in the system is gotten from the initial gravitational potential energy. This energy becomes transformed into the work done against friction and the work done in compression the spring. A work of 398J was done in overcoming friction over a distance of 6.00m. The energy used in doing so is lost as friction is not a conservative force. This leaves only 43J of energy which compresses the spring. On expansion the spring does a work of 43J back on the block is only enough to push it over a distance of 0.65m stopping short of 5.35m from point B.

Thank you for reading and I hope this is helpful to you.

4 0
2 years ago
A ski lift has a one-way length of 1 km and a vertical rise of 200 m. The chairs are spaced 20 m apart, and each chair can seat
myrzilka [38]

Answer:

P = 68.125 kW

P startup = 43.05 kW

Explanation:

4 0
2 years ago
A carmaker has designed a car that can reach a maximum acceleration of 12 meters/second2. The car’s mass is 1,515 kilograms. Ass
Vlada [557]
1) 15 / 12 = 1.25 ratio
2) to increase acceleration  1.25 times (with same F, or same engine) you have to lower mass 1.25 times
3) 1515/1.25 = 1212 kg

choose A

6 0
2 years ago
Scotesia swims from the north end to the south end of a 50.0 m pool in 20.0 s. As she begins to make the return trip , Sean, who
slega [8]

Answer:

a) 2.5m/s

b) 0.91m/s

c) 0m/s

Explanation:

Average velocity can be said to be the ratio of the displacement with respect to time.

Average speed on the other hand is the ratio of distance in relation to time

Thus, to get the average velocity for the first half of the swim

V(average) = displacement of first trip/time taken on the trip

V(average) = 50/20

V(average) = 2.5m/s

Average velocity for the second half of the swim will be calculated in like manner, thus,

V(average) = 50/55

V(average) = 0.91m/s

Average velocity for the round trip will then be

V(average) = 0/75, [50+25]

V(average) = 0m/s

3 0
2 years ago
Other questions:
  • To absorb kinetic energy and dissipate the force of a crash, newer cars __________
    10·1 answer
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • A 1.0-c point charge is 15 m from a second point charge, and the electric force on one of them due to the other is 1.0 n. what i
    9·1 answer
  • Starting with only the Balmer series light (visible light), how could we ensure that the solar panels generate a current that Ma
    14·2 answers
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • How are uniform circular motion maps the same as linear motion maps? Check all that apply.
    12·2 answers
  • Two 0.40 kg soccer ball collide elastically in a head-on collision. The first ball starts at rest, and the second ball has a spe
    8·2 answers
  • The 1.5-in.-diameter shaft AB is made of a grade of steel with a 42-ksi tensile yield stress. Using the maximum-shearing-stress
    8·1 answer
  • In a particular application involving airflow over a surface, the boundary layer temperature distribution may be approximated as
    15·1 answer
  • A very tall building has a height H0 on a cool spring day when the temperature is T0. You decide to use the building as a sort o
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!