The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Answer:
At focus
Explanation:
A concave mirror is converging in nature. In a mirror, concave in nature, the rays which are parallel to the principal axis are supposed to be coming from very large distances or we assume the source to be placed at infinity for such rays which are parallel to the principal axis.
These rays, parallel to the principal axis, coming from infinity, converges at the focus of the mirror concave in nature after reflecting from the concave mirror
Answer:
a.3.20m
b.0.45cm
Explanation:
a. Equation for minima is defined as: 
Given
,
and
:
#Substitute our variable values in the minima equation to obtain
:

#draw a triangle to find the relationship between
and
.
#where 

Hence the screen is 3.20m from the split.
b. To find the closest minima for green(the fourth min will give you the smallest distance)
#Like with a above, the minima equation will be defined as:
, where
given that it's the minima with the smallest distance.

#we then use
to calculate
=4.5cm
Then from the equation subtract
from
:

Hence, the distance
is 0.45cm
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
Answer:
Explanation:
Let the force required be F . It is applied at the top of the box . The box is likely to turn about a corner . Torque of this force about this corner
= F x 2
This torque will try to turn the box . On the other hand the weight which is acting at CM will create a torque about the same corner . This torque will try to prevent the box to turn around the corner.
This torque of weight
= 100 x 1
= 100 pound ft.
For equilibrium
Torque of F = torque of weight.
F x 2 = 100
F = 50 pounds .