<span>Waves hitting at an angle and then bending around features of the coast is known as Wave refraction
When waves hitting a specific angle, some part of the waves will be closer to the shallow part of the water and some part will be closer to the deeper part of the water, which makes the wave became somehow bent around the shore.</span>
The answer to the blank above is 20. The speed limit given provided that you cannot see the tracks for 400 ft in both directions is always 20 mph. Basically, this 20 mph is decided based upon the traffic laws in order to avoid road casualties. Since it is "uncontrolled railroad crossing", the minimum speed should be implemented to slow down for the purpose of traffic calming measures. Other than this, the 20 mph is also applicable in narrowing roads as well as speed humps.
Answer:
-209.42J
Explanation:
Here is the complete question.
A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with x-component Fx=−[20.0N+(3.0N/m)x]. How much work does the force you apply do on the cow during this displacement?
Solution
The work done by a force W = ∫Fdx since our force is variable.
Since the cow moves from x₁ = 0 m to x₂ = 6.9 m and F = Fx =−[20.0N+(3.0N/m)x] the force applied on the cow.
So, the workdone by the force on the cow is
W = ∫₀⁶°⁹Fx dx = ∫₀⁶°⁹−[20.0N+(3.0N/m)x] dx
= ∫₀⁶°⁹−[20.0Ndx - ∫₀⁶°⁹(3.0N/m)x] dx
= −[20.0x]₀⁶°⁹ - [3.0x²/2]₀⁶°⁹
= -[20 × 6.9 - 20 × 0] - [3.0 × 6.9²/2 - 3.0 × 0²/2]
= -[138 - 0] - [71.415 - 0] J = (-138 - 71.415) J
= -209.415 J ≅ -209.42J
Answer: The Ampère -Max-well law
Explanation:
The Ampère -Max-well law relates magnetic flux and electric current. It determines the relationship between current in association with a magnetic field and also magnetic field in association to related current.
Answer:
The capacitance and the inductance can choose for a car-alarm circuit are
C = 215.27 μF
L = 9.078 μH
Explanation:
,
, 
To determine the capacitance can use the equation

Solve to C'


To find the inductance can use the frequency of the circuit

Solve to L'

