Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m
Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
72s for 24 complete oscillations.
Thus, a complete oscillation takes 72/24=3s
Answer: period T=3s