Answer: Conditions for equilibrium require that the sum of all external forces acting on the body is zero (first condition of equilibrium), and the sum of all external torques from external forces is zero (second condition of equilibrium). These two conditions must be simultaneously satisfied in equilibrium
Explanation: Hope this helped
Answer: k= 
Explanation:
Recall that the formula for kinetic energy is given below as
k = 
where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)
For cart A
= mass of cart A
= v = velocity of cart A
= kinetic energy of cart A
hence,
= 
For cart B
= mass of cart B
= 2v = velocity of cart B
= kinetic energy of cart B
hence,
=
= 2
from the question, both cart are identical which implies they have the same mass i.e
=
= m which implies that
and 
The total kinetic energy K is the sum of cart A and cart B kinetic energy


hence

Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm

Answer:
4.9 cm
Explanation:
From Hook's Law,
F = ke......................... Equation 1
Where F= force, e = extension, k = spring constant.
Note: the Force acting on the the spring is the weight of the mass.
W = mg.
F = mg.................... Equation 2
Where m = mass, g = acceleration due to gravity
Substitute equation 2 into equation 1
mg = ke
make e the subject of the equation
e = mg/k............... Equation 3.
Given: m = 2 kg, g = 9.8 m/s², k = 400 N/m
e = (2×9.8)/400
e = 19.6/400
e = 0.049 m
e = 4.9 cm