answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
2 years ago
15

An electric motor consumes 9.00 kj of electrical energy in 1.00 min. if one-third of this energy goes into heat and other forms

of internal energy of the motor, with the rest going to the motor output, how much torque will this engine develop if you run it at 2500 rpm?
Physics
1 answer:
liq [111]2 years ago
5 0
How do I make a question help PLZZZ
You might be interested in
A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
Gnoma [55]

Answer:34 cm

Explanation:

Given

mass of meter stick m=80 gm

stick is balanced when support is placed at 51 cm mark

Let us take 5 gm tack is placed at x cm on meter stick so that balancing occurs at x=50 cm mark

balancing torque

80\times 10^{-3}(51-50)=5\times 10^{-3}(50-x)

80=5(50-x)

80=250-5x

5x=170

x=\frac{170}{5}

x=34 cm

4 0
2 years ago
A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
san4es73 [151]

Answer:

16,18,22

Or

1,3,7

Explanation:

The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation

8 0
2 years ago
In conventional television, signals are broadcast from towers to home receivers. Even when a receiver is not in direct view of a
fgiga [73]

(a) The diffraction decreases

The formula for the diffraction pattern from a single slit is given by:

sin \theta = \frac{n \lambda}{a}

where

\theta is the angle corresponding to nth-minimum in the diffraction pattern, measured from the centre of the pattern

n is the order of the minimum

\lambda is the wavelength

a is the width of the opening

As we see from the formula, the longer the wavelength, the larger the diffraction pattern (because \theta increases). In this problem, since the wavelength of the signal has been decreased from 54 cm to 13 mm, the diffraction of the signal has decreased.

(b) 10.8^{\circ}

The angular spread of the central diffraction maximum is equal to twice the distance between the centre of the pattern and the first minimum, with n=1. Therefore:

sin \theta = \frac{(1) \lambda}{a}

in this case we have

\lambda=54 cm = 0.54 m is the wavelength

a=5.7 m is the width of the opening

Solving the equation, we find

\theta = sin^{-1} (\frac{\lambda}{a})=sin^{-1} (\frac{0.54 m}{5.7 m})=5.4^{\circ}

So the angular spread of the central diffraction maximum is twice this angle:

\theta = 2 \cdot 5.4^{\circ}=10.8^{\circ}

(c) 0.26^{\circ}

Here we can apply the same formula used before, but this time the wavelength of the signal is

\lambda=13 mm=0.013 m

so the angle corresponding to the first minimum is

\theta = sin^{-1} (\frac{\lambda}{a})=sin^{-1} (\frac{0.013 m}{5.7 m})=0.13^{\circ}

So the angular spread of the central diffraction maximum is twice this angle:

\theta = 2 \cdot 0.13^{\circ}=0.26^{\circ}

5 0
2 years ago
The basic function of an automobile carburetor is to atomize the gasoline and mix it with air to promote rapid combustion. Assum
tatyana61 [14]

Answer:

A = 7.5 \times 10^6 m^2

Explanation:

Since volume of all the liquid is always conserved

so here we know that

V_{total} = N V

25 cm^3 = N(\frac{4}{3}\pir^3)

25 = N (\frac{4}{3} \pi (1.0 \times 10^{-5})^3)

N = 5.97 \times 10^{15}

now we know that total surface area is given as

A = N(4\pi r^2)

A = (5.97 \times 10^{15})(4\pi (1 \times 10^{-5})^2

A = 7.5 \times 10^6 m^2

5 0
2 years ago
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
Other questions:
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • Kathmandu lies at high altitude than biratnagar from sea level.Where does an object has more weight between two places?Give reas
    6·1 answer
  • a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
    12·1 answer
  • Tyrel is learning about a certain kind of metal used to make satellites. He learns that infrared light is absorbed by the metal,
    5·1 answer
  • A small sphere of mass m is launched horizontally over a body of water from a height h above the water and with a launch speed v
    15·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • Ellen does an experiment by releasing a ball from a height of 1 m above each floor in a tall building. She records the time it t
    8·2 answers
  • In a scientific test conducted in Arizona, a special cannon called HARP (High Altitude Research Project) shot a projectile strai
    10·1 answer
  • A major disturbance that caused the ecosystem to stabilize at a new equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!