answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
2 years ago
10

A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the

book by the left side of the bookshelf are given by: FL= 1.52 NθL=31 degrees What must the magnitude and direction of the total force exerted on the book by the bottom of the bookshelf be in order for the book to remain in this position? Fb= _____Nθb=_____degree
Physics
1 answer:
tankabanditka [31]2 years ago
5 0

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

You might be interested in
.. A 15.0-kg fish swimming at 1.10 m>s suddenly gobbles up a 4.50-kg fish that is initially stationary. Ignore any drag effec
stira [4]

Answer:

(a) 0.846 m/s

(b) 2.097J

Explanation:

Parameters given:

Mass of big fish, M = 15 kg

Mass of small fish, m = 4.5 kg

Initial speed of big fish, U = 1.1 m/s

Initial speed of small fish, u = 0 m/s (it is stationary)

(a) We apply the principle of conservation of momentum:

Total initial momentum = Total final momentum

Since both fish have the same final speed, V, (the small fish is in the mouth of the big fish), we have:

MU + mu = (M + m)*V

(15 * 1.1) + (4.5 * 0) = ( 15 + 4.5) * V

16.5 = 19.5V

=> V = 16.5/19.5

V = 0.846 m/s

The speed of the large fish after the meal is 0.846 m/s.

(b) We need to find the change in Kinetic energy of the entire system to find the total mechanical energy dissipated.

Initial Kinetic energy:

KEini = (½ * M * U²) + (½ * m * u²)

KEini = (½ * 15 * 1.1²) + (½ * 4.5 * 0²)

KEini = 9.075 J

Final Kinetic Energy:

KEfin = (½ * M * V²) + (½ * m * V²)

KEfin = (½ * 15 * 0.846²) + (½ * 4.5 * 0.846²)

KEfin = 5.368 + 1.610 = 6.978 J

Change in kinetic energy will be:

KEfin - KEini = 9.075 - 6.978

ΔKE = 2.097 J

The energy dissipated in eating the meal is 2.097 J

5 0
2 years ago
(a) On the axes below, sketch the graphs of the horizontal and vertical components of the sphere’s velocity as a function of tim
jeka94

Answer:

Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity

Explanation:

4 0
2 years ago
Gravitational potential energy is often released by burning substances. true or false
jolli1 [7]
Gravitational potential energy is caused when an object is resting above the ground. It is released when the object is falling, not by burning substances.
4 0
2 years ago
Read 2 more answers
An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
Natali [406]

Answer:

1.38*10^18 kg

Explanation:

According to the Newton's law of universal gravitation:

F=G*\frac{m_a*m_p}{r^2}

where:

G= Gravitational constant (6.674×10−11 N · (m/kg)2)

ma= mass of the astronaut

mp= mass of the planet

F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2

so:

m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg

7 0
2 years ago
The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
const2013 [10]

Answer:

fr = ½ m v₀²/x

Explanation:

This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.

The best way to solve this exercise is to use the energy work theorem

            W = ΔK

Where work is defined as the product of force by distance

           W = fr x cos 180

The angle is because the friction force opposes the movement

          Δk =K_{f} –K₀

          ΔK = 0 - ½ m v₀²

We substitute

         - fr x = - ½ m v₀²      

           fr = ½ m v₀²/x

8 0
2 years ago
Other questions:
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
  • The suns energy is classified by the
    15·2 answers
  • Step 8: Observe How Changes in the Speed of the Bottle Affect Beanbag Height
    7·2 answers
  • While a car is stopped at a traffic light in a storm, raindrops strike the roof of the car. The area of the roof is 5.0 m2. Each
    13·1 answer
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • Part A At t tt = 2.0 s s , what is the particle's position? Express your answer to two significant figures and include the appro
    15·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!