The work done on the barbell is -165.62 Nm.
Explanation:
Work done on any object is the measure of force required to move that object from one position to another. So it is determined by the product of force acting on the object with the displacement of the object.
In the present problem, the displacement of the object on acting of force is given as 1.3 m. And the weight of the object which is a barbel is given as 13 kg. As the work is to lift the object from the ground, so the acceleration due to gravity will be acting on the object. In other words, the force applied on the object to lift it should be in opposite direction to the acting of acceleration due to gravity.
Thus, 
Now, the force is -127.4 N and the displacement is 1.3 m.
So, 

So, the work done on the barbell is -165.62 Nm.
Answer:
The answer is below
Explanation:
Given that:
mass (m) = 86 kg, distance (L) = 2.75 m, θ = 31°, force (F) = 595 N, initial velocity (
) = 2.4 m/s, g = acceleration due to gravity = 9.8 m/s²
The net work can be gotten from the equation:

From the work-energy theorem equation, we can get her speed at the top of the ramp (
)
Hence:

Answer:
we can say that with a smaller magnitude , the field will point is in same direction
Explanation:
we have given that
solenoid is filled with a diamagnetic material and with air, magnetic field pointing along its axis in the positive x direction
so in small magnitude, the field will point is in same direction
too much sun is dangerous for humans and can cause cancer so it's important that light is reflected for example a pool reflects water back to space that is why water sometimes is cold because it reflects light