<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Answer:
a)
b)
Explanation:
Given that
v(t) = 5 t i + t² j - 2 t³ k
We know that acceleration a is given as



Therefore the acceleration function a will be

The acceleration at t = 2 s
a= 5 i + 2 x 2 j - 6 x 2² k m/s²
a=5 i + 4 j -24 k m/s²
The magnitude of the acceleration will be

a= 24.83 m/s²
The direction of the acceleration a is given as

a)
b)
Answer:

Explanation:
<u>Second Newton's Law</u>
It allows to compute the acceleration of an object of mass m subject to a net force Fn. The relation is given by

The net force is the sum of all vector forces applied to the object. The block has two horizontal forces applied (in absence of friction): The 30 N force acting to the right and the 60 N force to the left. The positive horizontal direction is assumed to the right, so the net force is

Thus, the acceleration can be computed by


The negative sign indicates the block is accelerated to the left