Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]
Let loudness be L, distance be d, and k be the constant of variation such that the equation that would best represent the given above is,
L = k/(d^2)
For Case 1,
L1 = k/(d1^2)
For Case 2,
L2 = k/((d1/4)^2)
For k to be equal, L1 = 16L2.
Therefore, the loudness at your friend's position is 16 times that of yours.
An example for ruining a biodiversity is fishing.
The two factors that have
contributed to increased fishing in deep ocean waters in recent years are the
human population growth and decreased fishing opportunities inshore. Increase
population growth increases the demand for food which also leads to increase in
fish demand. Because the fish demand is high, inshore fishing opportunities
decrease that is why deep ocean waters is the new venue for fishing. This may sound absurd but poaching for subsistence is likely to be less damaging to he biodiversity <span>of an area than poaching for profit. Because the people do not care anymore to the biodiversity that they interrupted just to get back more profit. They do not care what must be taken from it like getting bigger fishes and leaving the smaller ones behind to maintain productivity.</span>
-- With two resistors in parallel, the total effective resistance is
the reciprocal of (1/R₁ + 1/R₂).
1/R₁ + 1/R₂ = 1/15 + 1/40
= 8/120 + 3/120
= 11/120
So the total effective resistance is 120/11 = 10.9 ohms .
Current = (voltage) / (resistance)
= 12 / (120/11)
= (12 · 11) / 120
= 132/120 = 1.1 Amperes