The box is at equilibrium, so the net force on the box is zero (the force of gravity on the box is equal to the force exerted up on the box by the surface on which it rests.)
To pick up the box, our upward force must be greater than the force of gravity on the box (the weight). So, we must lift up the box with a force greater than 98 newtons. :)
Answer:
A sample of 5.2 mg decays to .65 mg or to 1/8 of its original amount.
1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.
3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg
You can get these other numbers similarly:
5.2 / .0102 = 510 requires about 9 half-lives which is 30 * 9 = 270 yrs
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally
Answer:
Explanation:
Impulse = change in momentum
mv - mu , v and u are final and initial velocity during impact at surface
For downward motion of baseball
v² = u² + 2gh₁
= 2 x 9.8 x 2.25
v = 6.64 m / s
It becomes initial velocity during impact .
For body going upwards
v² = u² - 2gh₂
u² = 2 x 9.8 x 1.38
u = 5.2 m / s
This becomes final velocity after impact
change in momentum
m ( final velocity - initial velocity )
.49 ( 5.2 - 6.64 )
= .7056 N.s.
Impulse by floor in upward direction
= .7056 N.s
Answer:
the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south
Explanation:
given information:
Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus
A= 27
Ax = 27 sin 60 = - 23.4
Ay = 27 cos 60 = 13.5
Jane walks 16.0 m in a direction 30.0 ∘ south of west, so
B = 16
Bx = 16 cos 30 = -13.9
By = 16 sin 30 = -8
the direction that should be walked by Ricardo to go directly to Jane
R = √A²+B² - (2ABcos60)
= √27²+16² - (2(27)(16)(cos 60))
= 23.52 m
now we can use the sines law to find the angle
tan θ = 
= By - Ay/Bx -Ax
= (-8 - 13.5)/(-13.9 - (-23.4))
θ = 90 - (-8 - 13.5)/(-13.9 - (-23.4))
= 24° east of south