Answer:
4m/s2
Explanation:
The following data were obtained from the question:
U (initial velocity) = 10m/s
V (final velocity) = 30m/s
t (time) = 5secs
a (acceleration) =?
Acceleration is the rate of change of velocity with time. It is represented mathematically as:
a = (V - U)/t
Now, with this equation i.e
a = (V - U)/t, we can calculate the acceleration of the race car as follow:
a = (V - U)/t
a = (30 - 10)/5
a = 20/5
a = 4m/s2
Therefore, the acceleration of the race car is 4m/s2
Answer:
Maximum emf = 5.32 V
Explanation:
Given that,
Number of turns, N = 10
Radius of loop, r = 3 cm = 0.03 m
It made 60 revolutions per second
Magnetic field, B = 0.5 T
We need to find maximum emf generated in the loop. It is based on the concept of Faraday's law. The induced emf is given by :

For maximum emf, 
So,

So, the maximum emf generated in the loop is 5.32 V.
Answer:
3 hours
Explanation:
Given:
- The speed of Ben v_b = 3 mi/h
- The speed of Amanda v_a = 6 mi/h
- The total time taken to cover distance(d) by ben = t_b
Find:
How long will it be before Amanda catches up to Ben?
Solution:
- The distance d traveled by Ben:
d = v_b*t_b
d = 3*t_b
- The distance d traveled by Amanda:
d = v_a*t_a
d = 6*t_a
- Equate the distance as when they meet:
3*t_b = 6*t_a
- Where ,
t_b = t_a + 1.5
t_a = t_b - 1.5
- Substitute the time relationship in distance relationship:
3*t_b = 6*(t_b - 1.5)
3*t_b = 6*1.5
t_b = 2*1.5 = 3 h
- Hence, It would take 3 hours since Ben starts walking that amanda catches up.
Answer:
Suzie is 3 blocks north of where she started
Explanation:
Displacement is the minimum distance between the initial and final point of motion.
Here, Suzie first walks 3 blocks north. From there she walks 4 blocks east. Then 2 blocks to the east then 2 blocks north and then 2 blocks east. She covered 4 blocks east toward west. This is the same distance she covered traveling east. But she is 2 blocks north. From there she traveled a block south to the pizzeria and another block to her friends house. She covered the two block she had traveled north.
Hence, Suzie is 3 blocks north of where she started.
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .