answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
2 years ago
6

A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward a

cceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 64 m and acquired a velocity of 60 m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground. The time interval (in s), during which the rocket engine provides upward acceleration, is closest to: ? .
Physics
1 answer:
Dvinal [7]2 years ago
4 0

Answer:

2.13 s

Explanation:

Hi!

At t = 0s the rocket is at rest in its platform, so the intial speed is zero. I f the acceleration is A, then the height Y, and the speed V are:

Y=\frac{A}{2}t^2

V=At

We nedd to find time T during  which the rocket engine provides upward acceleration. We know that:

64\;m=\frac{A}{2}T^2\\ 60\frac{m}{s} =AT\\

With these 2 equations we can find A and T (dropping units for simplicity):

A=\frac{60}{T} \\64 =\frac{30}{T} T^2=30T\\T=\frac{64}{30}\approx 2.13\;s

You might be interested in
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
antoniya [11.8K]

Answer:

Intensity of beam 18 feet below the surface is about 0.02%

Explanation:

Using Lambert's law

Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium

then dI / I = kdt

taking log,

ln(I) = kt + ln C

I = Ce^kt

t=0=>I=I(0)=>C=I(0)

I = I(0)e^kt

t=3 & I=0.25I(0)=>0.25=e^3k

k = ln(0.25)/3

k = -1.386/3

k = -0.4621

I = I(0)e^(-0.4621t)

I(18) = I(0)e^(-0.4621*18)

I(18) = 0.00024413I(0)

Intensity of beam 18 feet below the surface is about 0.2%

3 0
2 years ago
The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
uranmaximum [27]

Since the tower base is square with a side length of  125 m,

Therefore,

(125\ m)^2+ (125\ m)^2=31250 m^2

Square root of 31250 = 176.776953 (Diameter) , so this is the diameter of the cylinder to enclose it, and radius, r = 88.38834765 m and height, h = 324 m.

The volume of cylinder,

=\pi r^2h=3.14(88.38834765 m)^2\times 324 m =7948168.803\ m^3

Thus, the mass of the air in the cylinder,

=1.225\ kg/m^3 \times 7948168.803\ m^3=9736506.78\ kg

Hence, the mass of the air in the cylinder is this more  than the mass of the tower.


4 0
1 year ago
A 65 kg students is walking on a slackline, a length of webbing stretched between two trees. the line stretches and sags so that
polet [3.4K]

Answer : Tension in the line = 936.7 N

Explanation :

It is given that,

Mass of student, m = 65 kg

The angle between slackline and horizontal, \theta=20^0

The two forces that acts are :

(i) Tension

(ii) Weight

So, from the figure it is clear that :

mg=2T\ sin\ \theta

T=\dfrac{mg}{2\ sin\theta}

T=\dfrac{65\ kg\times 9.8\ m/s^2}{2(sin\ 20)}

T=936.7\ N

Hence, this is the required solution.

5 0
1 year ago
Read 2 more answers
Water flows without friction vertically downward through a pipe and enters a section where the cross sectional area is larger. T
djverab [1.8K]

Answer:

v_{2} will be less than v_{1} and P_{2} will be greater than P_{1}.

Explanation:

As we know from the conservation of mass, the rate at which any amount of fluid mass (m_{1}) is entering in a system is equal to the rate at which the same amount of fluid mass (m_{2}) is leaving the system.

Rate of mass flow can be written as,

m = \rho A v

where \rho is the density of the fluid, A is the area through which the fluid is flowing and v is the velocity of the fluid.

Now, according to the problem, as the density of the fluid does not change, we can write

&& m_{1} = m_{2}\\&or,& \rho A_{1} v_{1} = \rho A_{2} v_{2}\\&or,& \dfrac{v_{2}}{v_{1}} = \dfrac{A_{1}}{A_{2}}

where A_{1} and A_{2} are the cross-sectional areas through which the fluid is passing and v_{1} and v_{2} are the velocities of the fluid through the respective cross-sectional areas.

As according to the problem, A_{2} > A_{1}, so from the above formula v_{2} < v_{1}.

Also we know that fluid pressure is created by the motion of the fluid through any area. When the fluid gains speed, some of its energy is used to move faster in the fluid’s direction of motion. It causes in a lower pressure.

So, as in this case v_{2} < v_{1} the pressure in the large cross-sectional area P_{2} will be greater than the pressure  P_{1} in the small cross sectional area, i.e.,

P_{2} > P_{1}.

6 0
2 years ago
A lab technician uses laser light with a wavelength of 670 nm to test a diffraction grating. When the grating is 40.0 cm from th
Juliette [100K]

Answer:

N = 221.4 lines / mm

Explanation:

Given:

- The wavelength of the source λ = 670 nm

- Distance of the grating from screen B = 40.0 cm

- The distance of first bright fringe from central order P = 6.0 cm

Find:

How many lines per millimeter does this grating have?

Solution:

- The derived results from Young's experiment that relates the order of bright fringes about the central order is given by:

                                          sin (Q) = n*λ*N

Where,

n is the order number 0, 1 , 2, 3 , ....

λ  is the wavelength of the light source

Q is the angle of sweep respective fringe from central order

N is the number of lines/mm the grating has

- We will first compute the length along which the light travels for the first bright fringe:

                                            L^2 = P^2 + B^2

                                            L^2 = 40^2 + 6^2

                                            L^2 = 1636

                                            L = 40.45 cm  

- Now calculate the sin(Q) that the fringe makes with the central order:

                                            sin (Q) = P / L

                                            sin (Q) = 6 / 40.45

- Now we will use the derived results:

                                           N = sin(Q) / n*λ

  Where, n = 1 - First order

  Plug values in                N = (6 / 40.45) / (670 *10^-6)

                                          N = 221.4 lines / mm

8 0
2 years ago
Other questions:
  • A carnot engine operates between two heat reservoirs at temperatures th and tc. an inventor proposes to increase the efficiency
    7·1 answer
  • You are installing a new spark plug in your car, and the manual specifies that it be tightened to a torque that has a magnitude
    14·1 answer
  • Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
    5·1 answer
  • Two disks with the same rotational inertia i are spinning about the same frictionless shaft, with the same angular speed ω, but
    8·1 answer
  • A 1.50-m cylinder of radius 1.10 cm is made of a complicated mixture of materials. Its resistivity depends on the distance x fro
    14·1 answer
  • A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
    6·1 answer
  • Assuming that you remain a finite distance from the origin, where in the X-Y plane could a point charge Q be placed, so that thi
    5·1 answer
  • A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
    11·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • The late news reports the story of a shooting in the city. Investigators think that they have recovered the weapon and they run
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!