Answer:
a) The sign of the charge is positive.
b) The magnetic force on the particle is 0.050 newtons.
Explanation:
The magnetic force F on a moving charge with velocity v passing through a magnetic field B is:
(1)
a)
Because it is a cross product, we can find the direction of the force using the right-hand rule, that is too the direction of the movement. We have two possibilities here because the velocity vector and magnetic field are perpendicular: the particle deflects towards east or toward west, which depends on the charge of the particle. Note that if you put your right hand fingers, except thumb, pointing towards north (direction of velocity) and later close them in the direction of the magnetic field, if you maintain your thumb perpendicular to this movement it will point towards east (See figure), so that will be de direction of the force if the charge is positive, but if the charge is negative, the direction will be opposite (towards west). So the charge has to be positive to deflects towards east.
b)
Now by 1:

This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.
Let: <span>fᵇ = beat frequency
</span>f₁ = first frequency
f₂ = second frequency
fᵇ = |f₁ - f₂|
substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz
The unit Hz also means beats per second, therefore:
<span>fᵇ = 4 beats per second
</span>
Therefore, the answer is C. 4
Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s