wave function of a particle with mass m is given by ψ(x)={ Acosαx −
π
2α
≤x≤+
π
2α
0 otherwise , where α=1.00×1010/m.
(a) Find the normalization constant.
(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.
(c) Find the particle’s average position.
(d) Find its average momentum.
(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N
Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


Option (a) is correct.
Change in volume during the band concert might have been caused by the constructive and destructive interference of sound waves.
Interference is the process of redistribution of energy when two or more waves superimpose on each other.When two sound waves which are in phase superimpose on each other, constructive interference takes place. During constructive interference , the amplitude of resulting waves increases.Thus the loudness of sound increases.
When two sound waves which are out of phase superimpose on each other, destructive interference takes place. During destructive interference , the amplitude of resulting waves decreases.Thus the loudness of sound decreases.
Answer:
c.
=0 and 
Explanation:
We are given that two particles collide and stick together.
If there is no external force act on the two particles then ,it is inelastic collision.
Inelastic collision: There is some loss of kinetic energy but the momentum is conserved.
According to law of conservation of momentum
Initial momentum=Final momentum
Change in momentum=Final momentum-Initial momentum=0
Change in momentum=
Initial kinetic energy is greater than final kinetic energy.
Change in kinetic energy=Final kinetic energy-kinetic energy=- negative

Hence, option c is true.
c.
=0 and 