Answer:
(a) Height is 4.47 m
(b) Height is 4.37 m
Solution:
As per the question:
Initial velocity of teh ball, 
Angle made by the ramp, 
Distance traveled by the ball on the ramp, d = 5.00 m
Now,
(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

where
H =
g = 

= 19.06 m/s
Now, maximum height attained is given by:


Height from the ground = 
(b) now, considering the coefficient of friction bhetween ramp and the ball,
:
velocity can be given by the eqn-3 of motion:


= 18.7 m/s
Now, maximum height attained is given by:


Height from the ground = 
Hello <span>Andijwiltbank
</span>
Question: <span>Often what one expects to see influences what is perceived in the surrounding environment. True or False?
Answer: True
Reason: What we observe about the environment decides what we believe about it and how we react.
Hope This Helps :-)
-Chris</span>
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
An oven mitt is used to take the tray out of the oven because it’s an insulator.