answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena55 [62]
2 years ago
11

a submarine moving directly upward in the water at constant speed. The weight of the summer and it is 500,000 N. The submarines

motors are off. The magnitude of the buoyant force acting on the submarine is
Physics
1 answer:
Alex787 [66]2 years ago
3 0
The answe would be A
You might be interested in
What is the length of the x-component of the vector plotted below?
deff fn [24]

Answer:

4

Explanation:

7 0
2 years ago
A cylinder has 500 cm3 of water. After a mass of 100 grams of sand is poured into the cylinder and all air bubbles are removed b
Nina [5.8K]

Answer: SG = 2.67

Specific gravity of the sand is 2.67

Explanation:

Specific gravity = density of material/density of water

Given;

Mass of sand m = 100g

Volume of sand = volume of water displaced

Vs = 537.5cm^3 - 500 cm^3

Vs = 37.5cm^3

Density of sand = m/Vs = 100g/37.5 cm^3

Ds = 2.67g/cm^3

Density of water Dw = 1.00 g/cm^3

Therefore, the specific gravity of sand is

SG = Ds/Dw

SG = (2.67g/cm^3)/(1.00g/cm^3)

SG = 2.67

Specific gravity of the sand is 2.67

3 0
2 years ago
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
2 years ago
Describe how electromagnetic radiation can ionise an atom. 2 marks
IRISSAK [1]

Answer:

Ionizing radiation is radiation with enough energy so that during an interaction with an atom, it can remove tightly bound electrons from the orbit of an atom, causing the atom to become charged or ionized. ... Forms of electromagnetic radiation.

(from google)

thank you :)

8 0
2 years ago
A block spring system oscillates on a frictionless surface with an amplitude of 10\text{ cm}10 cm and has an energy of 2.5 \text
antoniya [11.8K]

Answer:

The energy of the system is 15 J.

Explanation:

Given that,

Energy E = 2.5 J

Amplitude = 10 cm

We need to calculate the spring constant

Using formula of mechanical energy of the system

E=\dfrac{1}{2}kA^2

Put the value into the formula

2.5=\dfrac{1}{2}k\times(10\times10^{-2})^2

k=\dfrac{2.5\times2}{(10\times10^{-2})^2}

k=500\ N/m

If the block is replaced by a block with twice the mass of the original block

Amplitude = 6 cm

We need to calculate the energy

Using formula of mechanical energy

E=\dfrac{1}{2}kA^2

Put the value into the formula

E=\dfrac{1}{2}\times500\times(6\times10^{-2})

E=15\ J

Hence, The energy of the system is 15 J.

8 0
2 years ago
Other questions:
  • A boy throws a steel ball straight up. consider the motion of the ball only after it has left the boy's hand but before it touch
    11·2 answers
  • A typical jet airliner has a cruise airspeed of 900 km/h , which is its speed relative to the air through which it is flying. If
    9·1 answer
  • (HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
    11·1 answer
  • A steel sphere sits on top of an aluminum ring. The steel sphere (a= 1.1 x 10^-5/degrees celsius) has a diameter of 4.000 cm at
    15·1 answer
  • A Roller Derby Exhibition recently came to town. They packed the gym for twoconsecutive weekend nights at South's field house. O
    7·1 answer
  • The small piston of a hydraulic lift has a cross-sectional of 3 00 cm2 and its large piston has a cross-sectional area of 200 cm
    14·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
    15·1 answer
  • 4. In a closed system consisting of a cannon and a cannonball, the kinetic energy of a cannon is 72,000 J. If the cannonball is
    7·2 answers
  • The equation used to predict the theoretical period Ty of a simple pendulum assumes a small amplitude of oscillation. A student
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!