Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N
The answer would be C. It will decrease with descent. Hope this helps!
Answer:
-2 m/s^2
Explanation:
Acceleration is equal to the slope of the graph. You just find the slope of that section. The rise is -20 and the run is 10, so you get -2.
Answer:
3311N
Explanation:
r = radius = 600m
V = speed = 150m/s
Mass = weight = 70kg
The weight of pilot when calculated due to circular motion
W = tv
Fv = mv²/r
Fv = 70x150²/600
Fv = 79x22500/600
= 15750000/600
= 2625N
Real Weight of the pilot = m x g
= 70 x 9.8
= 686N
The apparent Weight is calculated by
Mv²/r + mg
= 2625N + 686N
= 3311 N
Therefore the apparent Weight is 3311N
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !