To calculate the acceleration of the wooden block, we use the expression F=ma where F is the force applied, m is the mass of the object and a is the acceleration. We calculate as follows:
F = ma
4.9 = 0.5a
a = 9.8
Hope this answers the question. Have a nice day.
L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension
Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²
Let δ = the stretch of the string.
Then the strain is
ε = δ/L
By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm
Answer: 15 mm
Answer:
Explanation:
Given

Em wave is in the form of

where 


Wave constant for EM wave k is

Wavelength of wave 


Answer:
There is 148.35 Joules of heat is released in the process.
Explanation:
Given that,
Heat capacity of the object, 
Initial temperature, 
Final temperature, 
We need to find the amount of heat released in the process. It is a concept of heat capacity. The heat released in the process is given by :

Let the mass of the object is 10 g or 0.01 kg
So,

Q = 148.35 Joules
So, there is 148.35 Joules of heat is released in the process. Hence, this is the required solution.