Answer: C. The case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
First and foremost, it should be noted that the mechanical energy is the addition of the potential and the kinetic energy.
From the information given, it should be known that when the block is projected with the same speed v up an incline where is slides to a stop due to friction, the box will lose its kinetic energy but there'll be na increase in the potential energy as a result of the veritcal height. This then brings about an increase in the mechanical energy.
Therefore, the total mechanical energy of the block will decrease the least when the case on the inclined surface had the least decrease intotal mechanical energy.
Answer:
The speed of the plane relative to the ground is 300.79 km/h.
Explanation:
Given that,
Speed of wind = 75.0 km/hr
Speed of plane relative to the air = 310 km/hr
Suppose, determine the speed of the plane relative to the ground
We need to calculate the angle
Using formula of angle

Where, v'=speed of wind
v= speed of plane
Put the value into the formula



We need to calculate the resultant speed
Using formula of resultant speed

Put the value into the formula



Hence, The speed of the plane relative to the ground is 300.79 km/h.
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity
Using p=v * i
p=250 * 0.8=200w = 0.2kw
power consumed in a day=0.2 *8=1.6 kwh
for one month=1.6 * 30 =48kwh
monthly bills= 48 *3 = Rs 144