answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
2 years ago
8

Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law

and the speed of light. b. Where are the actual stars in relation to their apparent position as viewed from the Earth's surface?

Physics
1 answer:
Grace [21]2 years ago
8 0

Answer:

Following are the answer to this question:

Explanation:

In option (a):

  • The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.  
  • Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.

In option (b):

  • Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.  
  • Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.

You might be interested in
Sunlight strikes a piece of crown glass at an angle of incidence of 38.0°. Calculate the difference in the angle of refraction b
zhuklara [117]

Answer:

Difference in the angle of refraction = 0.3°

41.04° is the minimum angle of incidence.

Explanation:

Angle of incidence  = 38.0°

For yellow light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for yellow light which is 1.523

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.523}{1}

{sin\theta_2}=0.9377

Angle of refraction for yellow light = sin⁻¹ 0.9377 = 69.67°.

For green light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for green light which is 1.526

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.526}{1}

{sin\theta_2}=0.9395

Angle of refraction for green light = sin⁻¹ 0.9395 = 69.97°.

The difference in the angle of refraction = 69.97° - 69.67° = 0.3°

Calculation of the critical angle for the yellow light for the total internal reflection to occur :

The formula for the critical angle is:

{sin\theta_{critical}}=\frac {n_r}{n_i}

Where,  

{\theta_{critical}} is the critical angle

n_r is the refractive index of the refractive medium.

n_i is the refractive index of the incident medium.

n₁ is the refractive index for yellow light which is 1.523 (incident medium)  

n₂ is the refractive index of air which is 1 (refractive medium)

Applying in the formula as:

{sin\theta_{critical}}=\frac {1}{1.523}

The critical angle is = sin⁻¹ 0.6566 = 41.04°

5 0
2 years ago
When a gas is rapidly compressed (say, by pushing down a piston) its temperature increases. When a gas expands against a piston,
shusha [124]

Answer:

Explained in explanation

Explanation:

The first law of thermodynamics states that the change in internal energy of a system(ΔU) is equal to the sum of the net heat transfer into the system(Q) and the net work done on the system(W). In equation, this law is;

ΔU = Q + W

Now, when there's gas inside a container with a movable piston that's tightly fitting, we will assume that the piston can move up and down thereby compressing the gas or allowing the gas to expand against it.

Now these gas molecules inside the container possess kinetic energy. Thus, the internal energy(U) of the system is simply the sum of all the kinetic energies of the individual gas molecules present in the container.

Therefore, if the temperature(T) of the gas increases, then the speed and internal energy(U) of the gas molecules will also increase. In the same way, if the temperature of the gas decreases, the speed and internal energy of the gas molecules would also decrease.

Now, back to the question, when the piston is pushed down, it does work on the gas and the gas does negative work on the piston. Thus, the gas will be get compressed to a smaller space, and thereby making the gas molecules to hit the piston at a faster rate. Thus, there is a decrease in speed and as we saw earlier that when there is a decrease in speed, it means temperature has decreased.

Whereas, when the piston is moved up, the gas does positive work on the piston and the speed of the gas molecules will increase. Like I said earlier that increase in speed means increase in temperature.

4 0
2 years ago
Choose the answer that explains the photoelectric effect.
Blababa [14]

the first one is D idk what the second one is

4 0
2 years ago
Read 2 more answers
On a dry day, just after washing your hair to remove natural oils and drying it thoroughly, run a plastic comb through it. Small
Hitman42 [59]
When the surface of the comb rubs on your hair, the comb is electrically charged. When the comb comes close to the paper, the charge on the comb causes charge separation on the paper bits. Since paper is neutral, positive and negative charges are equivalent. The charge on the comb charges the area of the bit of paper nearest the comb to the opposite. Thus, the bits of paper become attracted to the comb.
5 0
2 years ago
A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block
melomori [17]

This question is incomplete, the complete question is;

A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp.

How much of its original total energy (in J) survives as KE when it reaches the ground? m = 9.9 kg h = 4.9 m d = 5 m μ = 0.3 θ = 36.87°

Answer:

the amount of its original total energy (in J) that survives as KE when it reaches the ground will is 358.975 J

Explanation:

Given that;

m = 9.9 kg

h = 4.9 m

d = 5 m

μ = 0.3

θ = 36.87°

Now from conservation of energy, the energy is;

Et = mgh

we substitute

Et = 9.9 × 9.8 × 4.9

= 475.398 J

Also the loss of energy i

E_loss = (umg cosθ) d

we substitute

E_loss  = 0.3 × 9.9 × 9.8 × cos36.87°  × 5

= 116.423 J

so the amount of its original total energy (in J) that survives as KE when it reaches the ground will be

E = Et - E_loss

E = 475.398 J - 116.423 J

E = 358.975 J

5 0
2 years ago
Other questions:
  • If steam enters a turbine at 600K and is exhausted at 400K, calculate the efficiency of the engine.
    13·2 answers
  • A steady circular __________ light means drivers must stop at a marked stop line.
    7·2 answers
  • a professional baseball player can pitch a baseball with a velocity of 44.7m/s towards home plate. If a baseball weighs 1.4 N, h
    6·2 answers
  • Specific agricultural uses of water are all of the following except _____. evaporation growing crops raising livestock cleaning
    14·2 answers
  • In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. controlling the angle of the sp
    13·1 answer
  • According to the article, which pattern of brain waves are most conducive to studying new information?
    14·1 answer
  • A quarterback throws a football at 40km/hr to a receiver 50yd away. How much time does it take the ball to reach the receiver
    14·1 answer
  • If the Force exerted by the intern is doubled and the distance is halved, does the done by the intern increase, decrease, or rem
    10·1 answer
  • Force F1 acts on a particle and does work W1. Force F2 acts simultaneously on the particle and does work W2. The speed of the pa
    9·1 answer
  • A ball is falling at terminal velocity. Terminal velocity occurs when the ball is in equilibrium and the forces are balanced. Wh
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!