Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4
Answer:

Explanation:
m = Mass of stick
L = Length of stick = 1 m
h = Center of mass of stick = 
g = Acceleration due to gravity
T = Time period = 0.85 s
Time period is given by

Moment of inertia is given by


The acceleration of gravity on this planet is 