answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
1 year ago
9

A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a

car is moving away from this stereo at a speed of 40.0 m/s. The frequency of sound waves that the car receives is ________. In addition, when the car is 70.0 meters away from the speaker, the car will hear sound waves with a sound intensity level of _________ .
Physics
1 answer:
photoshop1234 [79]1 year ago
3 0

Answer:

a) f' = 432 Hz

b) I = 8.12*10^-4 W/m^2

Explanation:

a) To calculate the frequency of sound waves that car receives, you take into account the Doppler effect. In this case (observer moves away of the source) you have the following formula:

f'=f(\frac{v-v_o}{v+v_s})    (1)

where

f: frequency of the source = ?

v: speed of sound = 343 m/s

vo: speed of the observer = 40.0 m/s

vs: speed of the source = 0 m/s (stationary)

You replace the values of all parameters in the equation (1):

To calculate f' you first calculate the frequency of the sound wave, by using the following formula:

v=\lambda f\\\\

v: speed of sound

λ: wavelength = 0.700 m

f=\frac{v}{\lambda}=\frac{343m/s}{0.700m}=480Hz

Next, you replace the values of all parameters in the equation (1):

f'=(490Hz)(\frac{343m/s-40.0m/s}{343m/s})=432Hz

hence, the frequency perceived by the car is 432 Hz

b) To calculate the power of the sound wave, when the car is 70.0 maway from the speaker, you use the following formula:

I=\frac{P}{4\pi r^2}

P: power of the source = 50.0 W

r: distance to the source = 70.0 m

I=\frac{50.0 W}{4\pi(70.0m)^2}=8.12*10^{-4}\frac{W}{m^2}

hence, the intensity is 8.12*10^⁻4 W/m^2

You might be interested in
Maia says that both lines on this position vs time graph show acceleration. Is she correct? Why or why not?
Ulleksa [173]

Answer:

do you have access to the graph?

Explanation:

3 0
1 year ago
Read 2 more answers
.. A 15.0-kg fish swimming at 1.10 m>s suddenly gobbles up a 4.50-kg fish that is initially stationary. Ignore any drag effec
stira [4]

Answer:

(a) 0.846 m/s

(b) 2.097J

Explanation:

Parameters given:

Mass of big fish, M = 15 kg

Mass of small fish, m = 4.5 kg

Initial speed of big fish, U = 1.1 m/s

Initial speed of small fish, u = 0 m/s (it is stationary)

(a) We apply the principle of conservation of momentum:

Total initial momentum = Total final momentum

Since both fish have the same final speed, V, (the small fish is in the mouth of the big fish), we have:

MU + mu = (M + m)*V

(15 * 1.1) + (4.5 * 0) = ( 15 + 4.5) * V

16.5 = 19.5V

=> V = 16.5/19.5

V = 0.846 m/s

The speed of the large fish after the meal is 0.846 m/s.

(b) We need to find the change in Kinetic energy of the entire system to find the total mechanical energy dissipated.

Initial Kinetic energy:

KEini = (½ * M * U²) + (½ * m * u²)

KEini = (½ * 15 * 1.1²) + (½ * 4.5 * 0²)

KEini = 9.075 J

Final Kinetic Energy:

KEfin = (½ * M * V²) + (½ * m * V²)

KEfin = (½ * 15 * 0.846²) + (½ * 4.5 * 0.846²)

KEfin = 5.368 + 1.610 = 6.978 J

Change in kinetic energy will be:

KEfin - KEini = 9.075 - 6.978

ΔKE = 2.097 J

The energy dissipated in eating the meal is 2.097 J

5 0
2 years ago
Vector A⃗ has a magnitude of 3.00 and is directed parallel to the negative y-axis and vector B⃗ has a magnitude of 3.00 and is d
tangare [24]

<u>Answer</u>

C = 6.00; θ = 270˚

<u>Explanation</u>

A vector is described by giving both its magnitude and direction.

A = 3.00; 270°

B = -3.00; 90°

C = A - B. From this expression, it can be seen that we have already reversed the direction of B. So vector C is in the direction of A.

C = A - B

C = 3.00 - (-3.00)

= 6.00


3 0
2 years ago
Read 2 more answers
You are designing a generator with a maximum emf 8.0 V. If the generator coil has 200 turns and a cross-sectional area of 0.030
shutvik [7]

Answer:

7.1 Hz

Explanation:

In a generator, the maximum induced emf is given by

\epsilon= 2\pi NAB f

where

N is the number of turns in the coil

A is the area of the coil

B is the magnetic field strength

f is the frequency

In this problem, we have

N = 200

A=0.030 m^2

\epsilon=8.0 V

B = 0.030 T

So we can re-arrange the equation to find the frequency of the generator:

f=\frac{\epsilon}{2\pi NAB}=\frac{8.0 V}{2\pi (200)(0.030 m^2)(0.030 T)}=7.1 Hz

4 0
1 year ago
Read 2 more answers
The seismic activity density of a region is the ratio of the number of earthquakes during a given time span to the land area aff
Natalija [7]

Answer:

0.0059

Explanation:

According to the question the seismic activity density is given by

\text{Seismic activity density}=\frac{\text{Number of Earthquakes over a given time span}}{\text{The land area affected}}

Here,

Number of Earthquakes over a given time span = 424

The land area affected = 71300 mi²

So,

\text{Seismic activity density}=\frac{424}{71300}\\\Rightarrow \text{Seismic activity density}=0.0059

The seismic activity density is 0.0059

8 0
1 year ago
Read 2 more answers
Other questions:
  • a concrete cube of side 0.50 m and uniform density 2.0 x 103 kg m–3 is lifted 3.0 m vertically by a crane. what is the change in
    13·2 answers
  • A source charge of 3 µC generates an electric field of 2.86 × 105 N/C at the location of a test charge. Using k = 8.99 × 109N.m^
    11·2 answers
  • Ashley made a paper boat and attached paperclips to the edges. In order to control her boat she used a horseshoe magnet. How is
    6·2 answers
  • A 120-V rms voltage at 1000 Hz is applied to an inductor, a 2.00-μF capacitor and a 100-Ω resistor, all in series. If the rms va
    7·2 answers
  • The oscilloscope can be thought of as a plotting machine. What is plotted on the a axis? What is plotted on the y axis? If you t
    5·1 answer
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • Part E Two forces, of magnitude 4N4N and 10N10N, are applied to an object. The relative direction of the forces is unknown. The
    5·1 answer
  • A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
    10·1 answer
  • How much voltage is required to run 0.64 A of current through a 240 resistor? Use V= IR.
    9·2 answers
  • A balloon tied up with a wooden piece is moving upward with velocity of 15m/s. At a height of 300m above the ground, the wooden
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!