Answer:900 feet
Explanation:
Given
Velocity 
it take 100 feet to stop
Using Equation of motion

where
v,u=Final and initial velocity
a=acceleration
s=distance moved


When velocity is 60 mph


s=900.08 feet
Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

Answer:
15.71 m/s
Explanation:
We are given;
Time; t = 0.2 s
Radius; r = 0.5 m
The circumference will give us the distance covered.
Formula for circumference is 2πr
Thus; Distance = 2πr = 2 × π × 0.5 = π
Linear speed = distance/time = π/0.2 = 15.71 m/s
Answer:
0.00066518 Nm
Explanation:
v = Velocity = 1.2 m/s
r = Distance to head = 2.3 cm
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 2.4 s
Angular speed is given by

From equation of rotational motion

Torque

The torque of the motor is 0.00066518 Nm