
Actually Welcome to the Concept of the Force and Power.
Since, according to the Newton's law,
Force = mass * Acceleration.
hence, here
Force = 142 N, accelration = 22.75 m/s2
hence, mass = 142/22.75
===> Mass = 6.24 Kg
hence the mass of the shot is 6.24 Kg
Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
Answer:
D. 0.9
Explanation:
Calculating minimum coefficient of static friction, we first resolve the forces (normal and frictional) acting on the vehicle at an angle to the horizontal into their x and y components. After this, we can now substitute the values of x and y components into equation of static friction. Diagrammatic illustration is attached.
Resolving into x component:
∑
------(1)
Resolving into y component:
∑
------(2)
Static frictional force,
μ
------(3)
substituting
from equation (1) and
from equation (2) into equation (3)
μ
μ
μ 
μ 
The angle the vehicles make with the horizontal α = 42°
μ ≥ tan 42°
μ ≥ 0.9
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight