Answer:
The magnitude of the average force exerted by the club on the ball during contact = mv/t
Explanation:
Impulse exerted on the ball = Momentum of the ball = mass * velocity = m*v
As we know,
m*v = Integration of F.dt with limits 0 to T
Ft = mv
F = mv/t
The magnitude of the average force exerted by the club on the ball during contact = mv/t
Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm
We have that The ratio U1/U2 of their potential energies due to their interactions with Q is
From the question we are told that
Question 1
Charge q1 is distance r from a positive point charge Q.
Question 2
Charge q2=q1/3 is distance 2r from Q.
Charge q1 is distance s from the negative plate of a parallel-plate capacitor.
Charge q2=q1/3 is distance 2s from the negative plate.
Generally the equation for the potential energy is mathematically given as

Therefore
The Equations of U1 and U2 is
For U1

For U2

Since
U is a function of q and q2=q1/3
Therefore

For Question 2
For U1

Therefore

For more information on this visit
brainly.com/question/23379286?referrer=searchResults
Answer:
The answer is B) Magnetic field
Explanation:
I chose it and I got it right