Answer:
0.0002°, 0.1691°, 0.338°
Explanation:
Difference between the two line = 5.97 * 10-⁸m
d = 1 / N
N = 5.0 * 10³
d = 2.0 * 10⁴m
nL = Nsin¤
For first order
588.995 * 10-⁹ = 2.0 * 10-⁴ sin ¤
Sin¤ = 2.944*10-³
¤ = sin-¹ 0.002944
¤ = 0.1687°
First order ¤ =
Sin-¹(589.592*-⁹ / 2.0 * 10-⁴)
Sin-¹ (0.002947) = 0.1689°
Angular separation = 0.1689 - 0.1687 = 0.0002°
Second order ¤ = sin-¹ [2 (589.59*10-⁹ / 2.0*10-⁴)] = sin-¹ (0.005895)
Second order ¤ = 0.3378°
Angular difference = 0.3378° - 0.1687° = 0.1691°
Third order ¤ = sin-¹ [3(589.59*10-⁹ /2.0*10-⁴] = 0.5067°
Angular difference = 0.5067° - 0.1687° = 0.338°
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Incomplete question as the car's speed is missing.I have assumed car's speed as 6.0m/s.The complete question is here
An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 6.00 kN, and the radius of the circle is 15.0 m. At the top of the circle, (a) what is the force FB on the car from the boom (using the minus sign for downward direction) if the car's speed is v 6.0m/s
Answer:

Explanation:
Set up force equation
∑F=ma
∑F=W+FB
The minus sign for downward direction
Answer:
Milliliters to Ounces Conversions
some results rounded
mL - fl oz
200.00 6.7628
200.01 6.7631
200.02 6.7635
200.03 6.7638
200.04 6.7642
200.05 6.7645
200.06 6.7648
200.07 6.7652
200.08 6.7655
200.09 6.7658
200.10 6.7662
200.11 6.7665
200.12 6.7669
200.13 6.7672
200.14 6.7675
200.15 6.7679
200.16 6.7682
200.17 6.7686
200.18 6.7689
200.19 6.7692
200.20 6.7696
200.21 6.7699
200.22 6.7702
200.23 6.7706
200.24 6.7709
mL fl oz
200.25 6.7713
200.26 6.7716
200.27 6.7719
200.28 6.7723
200.29 6.7726
200.30 6.7729
200.31 6.7733
200.32 6.7736
200.33 6.7740
200.34 6.7743
200.35 6.7746
200.36 6.7750
200.37 6.7753
200.38 6.7757
200.39 6.7760
200.40 6.7763
200.41 6.7767
200.42 6.7770
200.43 6.7773
200.44 6.7777
200.45 6.7780
200.46 6.7784
200.47 6.7787
200.48 6.7790
200.49 6.7794
mL fl oz
200.50 6.7797
200.51 6.7800
200.52 6.7804
200.53 6.7807
200.54 6.7811
200.55 6.7814
200.56 6.7817
200.57 6.7821
200.58 6.7824
200.59 6.7828
200.60 6.7831
200.61 6.7834
200.62 6.7838
200.63 6.7841
200.64 6.7844
200.65 6.7848
200.66 6.7851
200.67 6.7855
200.68 6.7858
200.69 6.7861
200.70 6.7865
200.71 6.7868
200.72 6.7872
200.73 6.7875
200.74 6.7878
mL fl oz
200.75 6.7882
200.76 6.7885
200.77 6.7888
200.78 6.7892
200.79 6.7895
200.80 6.7899
200.81 6.7902
200.82 6.7905
200.83 6.7909
200.84 6.7912
200.85 6.7915
200.86 6.7919
200.87 6.7922
200.88 6.7926
200.89 6.7929
200.90 6.7932
200.91 6.7936
200.92 6.7939
200.93 6.7943
200.94 6.7946
200.95 6.7949
200.96 6.7953
200.97 6.7956
200.98 6.7959
200.99 6.7963
Explanation:
PART A)
horizontal distance that will be moved = 14 m
Height of the fence = 5.0 m
height from which it is thrown = 1.60 m
angle of projection = 54 degree
So here we can say that stone will travel vertically up by distance

now we will have displacement in horizontal direction

now we know that


now we will have


also for y direction


now from the two equations we will have




now from above equations


So the minimum speed will be 13.2 m/s
Part B)
Total time of the motion after which it will land on the ground will be "t"
so its vertical displacement will be

now we will have




Now the time after which it will reach the fence will be t1 = 1.8 s
so total time after which it will fall on other side of fence


now the displacement on the other side is given as


