answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
2 years ago
9

The flowers of the bunchberry plant open with astonishing force and speed, causing the pollen grains to be ejected out of the fl

ower in a mere 0.30 ms at an acceleration of 2.5 × 104 m. s2 If the acceleration is constant, what impulse is delivered to a pollen grain with a mass of 1.0 × 10−7g?
Physics
1 answer:
stellarik [79]2 years ago
3 0

Answer:

I = 7.5*10^-10 kg m/s

Explanation:

In order to calculate the impulse you first take into account the following formula:

I=m\Delta v=m(v-v_o)       (1)

m: mass of the pollen grain = 1.0*10^-7g = 1.0*10^-10 kg

v: final speed of the pollen grain = ?

vo: initial speed of the pollen grain = 0 m/s

Next, you calculate the final speed of the pollen grain by using the information about the acceleration and time. You use the following formula:

v=v_o+a t       (2)

a: acceleration = 2.5*10^4 m/s^2

t: time = 0.30ms = 0.30*10^-3 s

v=0m/s+(2.5*10^4m/s^2)(0.30*10^{-3}s)=7.5\frac{m}{s}

Next, you replcae this value of v in the equation (1) and calculate the impulse:

I=m(v-v_o)=(1.0*10^{-10}kg)(7.5m/s-0m/s)=7.5*10^{-10}kg.\frac{m}{s}

The impulse delivered to the pollen grain is 7.5*10^-10 kg m/s

You might be interested in
16. A 7500 kg 18-wheeler traveling at 20 m/s exits onto the runaway truck ramp on the freeway.
miskamm [114]

Answer:

<em>765,000 Joule</em>

Explanation:

<u>Principle of Conservation of Energy </u>

The total energy in an isolated system cannot be created or destroyed, but transformed. Moving objects have kinetic energy, objects placed in some height above a reference level have gravitational potential energy. When they change their motion variables, one energy converts into the other, but if the numbers don't fit, we know there was some other type of energy acting into the system. The most common reason for energy 'losses' is the thermal energy, produced when objects move in rough surfaces or take friction from the air.

The 7,500 kg truck is originally traveling at 20 m/s to a certain height we'll set to 0. Thus, its total energy is  

\displaystyle E_1=\frac{mv^2}{2}

\displaystyle E_1=\frac{7,500\ 20^2}{2}

E_1=1,500,000\ Joule

When it comes to a stop, its speed is 0 and its height is 10 m higher than before. It means all the kinetic energy was transformed into other types of energy. The gravitational potential energy is

U=mgh=(7,500)(9.8)(10)=735,000\ Joule

Since this number is not equal to the previous value of the energy, the difference is due to thermal energy dissipated by friction

E_t=1,500,000\ Joule-735,000\ Joule=765,000\ Joule

7 0
1 year ago
As a 5.0 x 10^2 newton basketball player jumps from the floor up toward the basket, the magnitude of the force of her feet on th
Yuliya22 [10]
I believe the answer is (4) The reason that is, is because if the exponents are the same like 10^2 and 10^3, you can add them. Then you would get 10^5. You can go ahead though and multiply 5.0 and 1.0. Now remember that with decimals you don't need the zeros behind the decimal point. So that simplifies it with just 5 x 1. Leaving you with 5.0 x 10^5. 
4 0
1 year ago
Read 2 more answers
A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the
lakkis [162]

Answer:

(i) 7.2 feet per minute.

(ii) No, the rate would be different.

(iii) The rate would be always positive.

(iv) the resultant change would be constant.

(v) 0 feet per min

Explanation:

Let the length of ladder is l, x be the height of the top of the ladder from the ground and y be the length of the bottom of the ladder from the wall,

By making the diagram of this situation,

Applying Pythagoras theorem,

l^2 = x^2 + y^2-----(1)

Differentiating with respect to t ( time ),

0=2x\frac{dx}{dt} + 2y\frac{dy}{dt}  ( l = 26 feet = constant )

\implies 2y\frac{dy}{dt} = -2x\frac{dx}{dt}

\implies \frac{dy}{dt}=-\frac{x}{y}\frac{dx}{dt}

We have,

y = 10, \frac{dx}{dt}= -3\text{ feet per min}

\frac{dy}{dt}=\frac{3x}{10}-----(X)

(i) From equation (1),

26^2 = x^2 + 10^2

676=x^2 + 100

576 = x^2

\implies x = 24\text{ feet}

From equation (X),

\frac{dy}{dt}=\frac{3\times 24}{10}=7.2\text{ feet per min}

(ii) From equation (X),

\frac{dy}{dt}\propto x

Thus, for different value of x the value of \frac{dy}{dt} would be different.

(iii) Since, distance = Positive number,

So, the value of y will always a positive number.

Thus, from equation (X),

The rate would always be a positive.

(iv) The length of the ladder is constant, so, the resultant change would be constant.

i.e. x = increases ⇒ y = decreases

y = decreases ⇒ y = increases

(v) if ladder hit the ground x = 0,

So, from equation (X),

\frac{dy}{dt}=0\text{ feet per min}

3 0
1 year ago
A person who climbs up something (e.g., a hill, a ladder, the stairs) from the ground gains potential energy. a person's weight
zhannawk [14.2K]

We are given the following values:

weight w = 240 lb = 1,067.52 N

energy E = 3,000 J

 

The formula for potential energy is:

E = w h

where h is the height the person has to climb, therefore:

h = 3000 / 1067.52

<span>h = 2.81 m</span>

<span>
</span>

<span>Therefore he has to climb 2.81 meters</span>

3 0
2 years ago
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
1 year ago
Read 2 more answers
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • Tripling the displacement from equilibrium of an object in simple harmonic motion will change the magnitude of the object’s maxi
    9·1 answer
  • While a roofer is working on a roof that slants at 38.0 ∘ above the horizontal, he accidentally nudges his 95.0 n toolbox, causi
    13·1 answer
  • If there is a potential difference v between the metal and the detector, what is the minimum energy emin that an electron must h
    11·1 answer
  • A migrating robin flies due north with a speed of 12 m/s relative to the air. The air moves due east with a speed of 6.8 m/s rel
    11·1 answer
  • A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
    8·2 answers
  • A simple pendulum of length 2.5 m makes 5.0 complete swings in 16 s. What is the acceleration of gravity at the location?
    12·1 answer
  • A piece of a metal alloy with a mass of 114 g was placed into a graduated cylinder that contained 25.0 mL of water, raising the
    13·1 answer
  • Consider the specific example of a positive charge qqq moving in the +x direction with the local magnetic field in the +y direct
    12·2 answers
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!