answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
7

Boat A and Boat B have the same mass. Boat A's velocity is three times greater than that of Boat B. Compared to

Physics
1 answer:
Sonbull [250]2 years ago
5 0

Answer: Nine times as much

Explanation:

The kinetic energy of an object is given by the following equation:

K=\frac{1}{2}mV^{2} (1)

Where:

K is the kinetic energy

m is the mass of the object

V is the velocity of the object

Now, in this case we have two boats, A and B, which have the same mass m. However, the velocity of boat A V_{A} is three times greater than that of Boat B V_{B}:

V_{A}=3V_{B} (2)

With this in mind, let's write the kinetic energy for each boat:

<u>Boat A:</u>

K_{A}=\frac{1}{2}mV_{A}^{2} (3)

Substituting (2) in (3):

K_{A}=\frac{1}{2}m(3V_{B})^{2} (4)

K_{A}=9(\frac{1}{2}mV_{B}^{2}) (5)

<u></u>

<u>Boat B:</u>

K_{B}=\frac{1}{2}mV_{B}^{2} (6)

Comparing (5) and (6) we can see the kinetic energy of boat A is nine times as much as the kinetic energy of boat B.

You might be interested in
A moving sidewalk 95 m in length carries passengers at a speed of 0.53 m/s. One passenger has a normal walking speed of 1.24 m/s
Archy [21]

Answer:

a) t = 1.8 x 10² s

b) t = 54 s

c) t = 49 s

Explanation:

a) The equation for the position of an object moving in a straight line at constan speed is:

x = x0 + v * t

where

x = position at time t

x0 = initial position

v = velocity

t = time

In this case, the origin of our reference system is at the begining of the sidewalk.

a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:

x = x0 + v * t

95 m = 0m + 0. 53 m/s * t

t = 95 m/ 0.53 m/s

t = 1.8 x 10² s

b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)

t = 95 m/ 1.77 m/s = 54 s

c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:

0 m = 95 m -1.95 m/s * t

t = -95 m / -1.95 m/s = 49 s

3 0
2 years ago
If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the fr
Dmitriy789 [7]

Answer:

Frequency will be equal to 5.20 kHz

So option (c) will be correct answer

Explanation:

We have given value of capacitance C=8.5nF=8.5\times 10^{-9}f

Potential difference across capacitor V = 12 volt

Current through capacitor i=3.33mA=3.33\times 10^{-3}A

Capacitive reactance will be equal to X_c=\frac{V}{i}=\frac{12}{3.33\times 10^{-3}A}=3603.60ohm

Capacitive reactance is equal to X_c=\frac{1}{\omega C}

3603.60=\frac{1}{\omega\times  8.5\times 10^{-9}}

\omega =32647.091rad/sec

2\pi f=32647.091

f=5198.98Hz

f = 5.20 kHz

So frequency will be equal to 5.20 kHz

So option (c) will be correct answer

3 0
2 years ago
What is the final temperature when a 3.0 kg gold bar at 99 0C is dropped into 0.22 kg of water at 25oC?
slavikrds [6]

I will post my work, but is that 99 degrees Celsius and 25 degrees Celsius?


All you have to do is plug in the initial temperature for gold where it says Tg and the initial temperature for the water where it says Tw and then plug that in and you will have your answer.

8 0
2 years ago
The simulation kept track of the variables and automatically recorded data on object displacement, velocity, and momentum. If th
DiKsa [7]
<h2><u>Answer:</u></h2>

The simulation kept track of the variables and automatically recorded data on object displacement, velocity, and momentum. If the trials were run on a real track with real gliders, using stopwatches and meter sticks for measurement, the data compared by the following statements:

1. (There would be variables that would be hard to control, leading to less reliable data.)

3. (Meter sticks may lack precision or may be read incorrectly.)

4. (Real glider data may vary since real collisions may involve loss of energy.)

5. (Human error in recording or plotting the data could be a factor.)


6 0
2 years ago
Read 2 more answers
A positively-charged piece of plastic exerts an attractive force on an electrically neutral piece of paper. This is because: 1.
Furkat [3]

Answer:

1 ) Electrons are less massive than than atomic nuclei.

Explanation:

A positively charged body tends to attract negatively charged particle and repel positively charged particle. Neutral body consists of atoms which contain both positively charged particles ( electrons ) and negatively charged particles ( protons ). Electrons are small and light in weight . Both electrons and protons experience equal and opposite force by an external charged body but shift in electron is more because of their being comparatively lighter. So the body gets polarized due to uneven distribution of charge. This results into body getting attracted through the process of induction.

3 0
2 years ago
Other questions:
  • The position function x(t) of a particle moving along an x axis is x = 4.00 - 6.00t2, with x in meters and t in seconds. (a) at
    14·1 answer
  • Voices of swimmers at a pool travel 400 m/s through the air and 1,600 m/s underwater. The wavelength changes from 2 m in the air
    13·2 answers
  • A 2530-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that
    5·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • A short current element dl⃗ = (0.500 mm)j^ carries a current of 5.40 A in the same direction as dl⃗ . Point P is located at r⃗ =
    15·1 answer
  • A ball is thrown upward from the top of a 25.0 m tall building. The ball’s initial speed is 12.0 m/sec. At the same instant, a p
    10·1 answer
  • Consider a lawnmower of mass m which can slide across a horizontal surface with a coefficient of friction μ. In this problem the
    6·1 answer
  • Force F1 acts on a particle and does work W1. Force F2 acts simultaneously on the particle and does work W2. The speed of the pa
    9·1 answer
  • A ball of unknown mass m is tossed straight up with initial speed v. At the moment it is released, the ball is a height h above
    5·1 answer
  • A steel cylinder at sea level contains air at a high pressure. Attached to the tank are two gauges, one that reads absolute pres
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!