Answer:
fcosθ + Fbcosθ =Wtanθ
Explanation:
Consider the diagram shown in attachment
fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)
Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)
Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)
sum of x-direction forces = 0
fx+ Fbx=Wx
fcosθ + Fbcosθ =Wtanθ
Answer:
7350 J
Explanation:
The gravitational potential energy of the rock sitting on the edge of the cliff is given by:

where
m is the mass of the rock
g is the gravitational acceleration
h is the height of the cliff
In this problem, we have
m = 50 kg
g = 9.8 m/s^2
h = 15 m
Substituting numbers into the formula, we find:

Answer:
During convection, hot material expands & rises then moves to the side and cools & sinks. this circular pattern is called a convection current.
Explanation:
Convection is one of the three methods of transfer of heat. It occurs only in fluids (liquids or gases).
Convection occurs when there is a source of heat that heats a fluid, such as in a boiling pot of water. The water which is on the bottom of the pot becomes warmer before than the water at the top (because it is closer to the flame), and so it becomes less dense: for this reason, it expands and it becomes rising. On the contrary, the water on top is colder, so it is more dense and starts sinking, replacing the warmer water. As the new part of water gets warmer, it starts rising, and so the process is continuously repeated. This circular current is called convection current.
Answer:
4.988kW
Explanation:
According to the question, energy E extracted from the ocean breaker is directly proportional to the intensity I. It can be expressed mathematically as E ∝ I
E = kI where k is the constant of proportionality.
From the formula; k = E/I
This shows that increase in energy extracted will lead to increase in its intensity and vice versa.
If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high
E = 10kW and I = 1.20m
k = 10/1.20
k = 8.33kW/m
To know how much energy E that will be produced when they are 0.600 m high, we will use the same formula
k = E/I where;
k = 8.33kW/m
I = 0.600m
E = kI
E = 8.33 × 0.6
E = 4.998kW
The device will produce energy of 4.998kW when they are 0.600m high.