answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
2 years ago
13

A counter attendant in a diner shoves a ketchup bottle with a mass 0.30 kg along a smooth, level lunch counter. The bottle leave

s her hand with an initial velocity 2.8 m/s. As it slides, it slows down because of the horizontal friction force exerted on it by the countertop. The bottle slides a distance of 1.0 m before
coming to rest. What are the magnitude and direction of the friction force acting on it?
Physics
1 answer:
balu736 [363]2 years ago
8 0

Answer:

1.176 N

Explanation:

m = mass of the bottle = 0.30 kg

v_{o} = initial speed of the bottle = 2.8 m/s

v = final speed of the bottle = 0 m/s

d = stopping distance traveled = 1.0 m

f = magnitude of frictional force acting on bottle

Using work-change in kinetic energy theorem

- f d = (0.5) m (v^{2} - v_{o}^{2} )\\- f (1) = (0.5) (0.30) (0^{2} - 2.8^{2} )\\-f = - 1.176 \\f = 1.176 N

direction :

frictional force acts in opposite direction of motion.

You might be interested in
A heavy stone of mass m is hung from the ceiling by a thin 8.25-g wire that is 65.0 cm long. When you gently pluck the upper end
Triss [41]

Answer: m= 35.6 kg

Explanation:

For finding the mass of the stone we have the formula

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

Here, Tension= m*g = m*9.81

and linear mass density= \frac{8.25 g}{65 cm}

Linear mass density= \frac{8.25*10^-3}{65*10^-2}

Linear mass density= 0.0127 kg/m

Velocity= 2*\frac{l}{t}

Velocity= 2 * \frac{65*10^-2}{7.84}

Velocity= 165.8 m/s

So putting all these values in equation we get

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

165.8= \sqrt{\frac{m*9.81}{0.0127} }

Solving we get

m= 35.58 kg

or m= 35.6 kg

3 0
2 years ago
A section of highway has the following flowdensity relationship q = 50k − 0.156k2 [with q in veh/h and k in veh/mi]. What is the
lions [1.4K]

Answer:

a) capacity of the highway section = 4006.4 veh/h

b) The speed at capacity = 25 mph

c) The density when the highway is at one-quarter of its capacity = k = 21.5 veh/mi or 299 veh/mi

Explanation:

q = 50k - 0.156k²

with q in veh/h and k in veh/mi

a) capacity of the highway section

To obtain the capacity of the highway section, we first find the k thay corresponds to the maximum q.

q = 50k - 0.156k²

At maximum flow density, (dq/dk) = 0

(dq/dt) = 50 - 0.312k = 0

k = (50/0.312) = 160.3 ≈ 160 veh/mi

q = 50k - 0.156k²

q = 50(160.3) - 0.156(160.3)²

q = 4006.4 veh/h

b) The speed at the capacity

U = (q/k) = (4006.4/160.3) = 25 mph

c) the density when the highway is at one-quarter of its capacity?

Capacity = 4006.4

One-quarter of the capacity = 1001.6 veh/h

1001.6 = 50k - 0.156k²

0.156k² - 50k + 1001.6 = 0

Solving the quadratic equation

k = 21.5 veh/mi or 299 veh/mi

Hope this Helps!!!

3 0
2 years ago
The amount of pressure required to move a 6800 lb force with a 6" d piston is ___ psi.
Katena32 [7]
The pressure needed in PSI = Pounds of force needed divided by the cylinder Area
The Cylinder rod Area is 21.19  sq inches
Thus, the pressure= 6800/21.19
                              = 320.91 PSI

7 0
1 year ago
Calculate the distance the marble travels during the first 3.0 seconds. [Show all work, including the equation and substitution
Alenkinab [10]

D = V0t + 0.5at^2

Where d is the distance

V0 is the initial velocity

A is the acceleration

T is time

From the graph a = 4/3 m/s2

D = 0(3) + 0.5( 4/3 m/s2) ( 3 s)^2

D = 6 m

3 0
1 year ago
A weather balloon is rising vertically from a launching pad on the ground. A technician standing 300 feet from the launching pad
avanturin [10]

Answer:

\dfrac{dh}{dt} =5\ ft/s

Explanation:

Let

h = height of balloon (in feet).

θ = angle made with line of sight and ground (in radians).

h = 300  tanθ

\dfrac{dh}{d\theta } = 300 sec^2\theta

now  \dfrac{dh}{dt} can be written as

\dfrac{dh}{dt} =\dfrac{dh}{d\theta }\times \dfrac{d\theta }{dt}

\dfrac{d\theta }{dt} = \dfrac{1}{120}\at \ \theta =\dfrac{\pi}{4}

When θ = π/4,

\dfrac{dh}{d\theta } = 300 sec^2\theta

\dfrac{dh}{d\theta } = 600

\dfrac{dh}{dt} =\dfrac{dh}{d\theta }\times \dfrac{d\theta }{dt}

\dfrac{dh}{dt} =600\times \dfrac{1}{120}

\dfrac{dh}{dt} =5\ ft/s

5 0
2 years ago
Other questions:
  • It takes 56.5 kilojoules of energy to raise the temperature of 150 milliliters of water from 5°C to 95°C. If you
    6·1 answer
  • Consider a solid, rigid spherical shell with a thickness of 100 m and a density of 3900 kg/m3 . the sphere is centered around th
    5·2 answers
  • A boy does 465 J of work pulling an empty wagon along level ground with a force of 111 N [31o below the horizontal]. A frictiona
    13·1 answer
  • A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
    10·1 answer
  • Ten seconds after an electric fan is turned on, the fan rotates at 300 rev/min. its average angular acceleration is
    7·1 answer
  • Sandy is on a road trip. She leaves at 8:00 AM. It takes her 2 hours to drive 200 kilometers. She stops at a rest stop for half
    9·1 answer
  • A car starting from rest (i.e. initial velocity = 0.0 m/s), moves in the positive X-direction with a constant average accelerati
    14·1 answer
  • A power washer is being used to clean the siding of a house. Water enters at 20 C, 1 atm, with a volumetric flow rate of 0.1 lit
    13·1 answer
  • The amusement park ride shown above takes riders straight up a tall tower and then releases an apparatus holding seats. This app
    6·1 answer
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!