Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
The neutral table tennis ball will become
polarized, with positive charges toward the glass rod. The
correct answer between all the choices given is the last choice or letter D. I
am hoping that this answer has satisfied your query and it will be able to help
you, and if you would like, feel free to ask another question.
Answer:
F = 1618.65[N]
Explanation:
To solve this problem we use the following equation that relates the mass, density and volume of the body to the floating force.
We know that the density of wood is equal to 750 [kg/m^3]
density = m / V
where:
m = mass = 165[kg]
V = volume [m^3]
V = m / density
V = 165 / 750
V = 0.22 [m^3]
The floating force is equal to:
F = density * g * V
F = 750*9.81*0.22
F = 1618.65[N]
The resultant static friction force is equal to 20 N to the left.
Why?
I'm assuming that you forgot to write the question of the exercise, so, I will try to complete it:
"A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-n force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate?"
So, if we are going to calculate the resulting static friction force, it means that there is no movement, we must remember that the friction coefficient will give us the maximum force before the crate starts to move.
We can calculate the static friction force by using the following formula:

Since the crate is not moving (static), the static friction force acting on the crate will be equal to the applied force.
Calculating we have:


Hence, the static friction force is equal to 20 N to the left (since the applied force is acting to the right)
So,
Since the static friction force is equal to the applied force, the crate does not start to move.
Have a nice day!