Answer:
Wet surfaces areaA=+25.3ft^2
Explanation:
Using F= K×A× S^2
Where F= drag force
A= surface area
S= speed
Given : F=996N S=20mph A= 83ft^2
K = F/AS^2=996/(83×20^2)
K= 996/33200 = 0.03
1215= (0.03)× A × 18^2
1215=9.7A
A=1215/9.7=125.3ft^2
Explanation:
Below is an attachment containing the solution.
Answer:
7.75 s
Explanation:
Newton's second law:
∑F = ma
35 N = (70 kg) a
a = 0.5 m/s²
Given v₀ = 0 m/s and Δx = 15 m:
Δx = v₀ t + ½ at²
(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²
t = 7.75 s
Answer:
xcritical = d− m1
/m2
( L
/2−d)
Explanation: the precursor to this question will had been this
the precursor to the question can be found online.
ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces
smallest possible value of x such that the bar remains stable (call it xcritical)
∑τA = 0 = m2g(d− xcritical)− m1g( −d)
xcritical = d− m1
/m2
( L
/2−d)
Refer to the diagram shown below.
v = the tangential speed.
r = the radius of the horizontal circle.
T = tension in the string.
θ = the angle that the string makes with the vertical
m = Bob's mass (mg = the weight)
F = centripetal force
l = the length of the string
From geometry,
r = l sin θ
The centripetal acceleration is

The centripetal force is

For vertical force balance,
T cosθ = mg (1)
For horizontal force balance,

(2)
Divide (2) by (1).

Answer: