answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelu [443]
2 years ago
6

If the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal

bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
Physics
1 answer:
iVinArrow [24]2 years ago
6 0

Answer:

xcritical = d− m1 /m2 ( L /2−d)

Explanation: the precursor to this question will had been this

the precursor to the question can be found online.

ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)

. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces

smallest possible value of x such that the bar remains stable (call it xcritical)

∑τA = 0 = m2g(d− xcritical)− m1g( −d)

xcritical = d− m1 /m2 ( L /2−d)

You might be interested in
Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
Bezzdna [24]
:<span>  </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s 

At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg) 

So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road .. 

Fn = mg - mv²/R 
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards) 
(b) 
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero. 

ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)² 

►v = √198 = 14.0 m/s</span>
3 0
2 years ago
A 0.0140 kg bullet traveling at 205 m/s east hits a motionless 1.80 kg block and bounces off it, retracing its original path wit
makvit [3.9K]

Answer:

Final velocity of the block = 2.40 m/s east.

Explanation:

Here momentum is conserved.

Initial momentum = Final momentum

Mass of bullet = 0.0140 kg

Consider east as positive.

Initial velocity of bullet = 205 m/s

Mass of Block = 1.8 kg

Initial velocity of block = 0 m/s

Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s

Final velocity of bullet = -103 m/s

We need to find final velocity of the block( u )

Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u

We have

            2.87 = -1.442 + 1.8 u

               u = 2.40 m/s

Final velocity of the block = 2.40 m/s east.

7 0
2 years ago
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
2 years ago
Two parallel co-axial disks are floating in deep space (far from sun and planets). Each disk is 1 meter in diameter and the disk
HACTEHA [7]

Answer:

T₂ = 5646 K

Explanation:

Let's start by finding the power received by the first disc, for this we use Stefan's law

          P = σ. A e T⁴

Where next is the Stefam-Bolztmann constant with value 5,670 10-8 W / m² K⁴, A is the area of ​​the disk, T the absolute temperature and e the emissivity that for a black body is  1

The intensity is defined as the amount of radiation that arrives per unit area. For this we assume that the radiation expands uniformly in all directions, the intensity is

           I = P / A

Writing this expression for both discs

          I₁ A₁ = I₂ A₂

          I₂ = I₁ A₁ / A₂

The area of ​​a sphere is

          A = 4π r²

           I₂ = I₁ (r₁ / r₂)²

          r₂ = r₁ ± 5

          I₁ = I₂ ( (r₁ ± 5)/r₁)²

.

        Let's write the Stefan equation

         P / A = σ e T⁴

          I = σ e T⁴

This is the intensity that affects the disk, substitute in the intensity equation

         σ e₁ T₁⁴ = σ e₂ T₂⁴ (r₂ / r₁)²

The first disc indicates that it is a black body whereby e₁ = 1, the second disc, as it is painted white, the emissivity is less than 1, the emissivity values ​​of the white paint change between 0.90 and 0.95, for this calculation let's use 0.90 matt white

        e₁ T₁⁴ = T₂⁴   (r1 + 5)²/r₁²

       T₁ = T₂  {(e₂/e₁)}^{1/4}  √(1 ± 1/ r₁)  

If we assume that r₁ is large, which is possible since the disks are in deep space, we can expand the last term

           (1 ±x) n = 1 ± n x

Where x = 5 / r₁ << 1

We replace

          T₁ = T₂ {(e₂/e₁)}^{1/4}  (1 ± ½   5/r1)

           T₁ = T₂ {(e₂)}^{1/4}   (1 ± 5/2 1/r1)

If the discs are far from the star, they indicate that they are in deep space, the distance r₁ from being grade by which we can approximate; this is a very strong approach

              T₁ = T₂  {(e₂)}^{1/4} ¼

              T<u>₁</u> = T₂  0.90.9^{1/4}

               5500 = T₂  0.974

               T₂ = 5646 K

3 0
2 years ago
Which of the following forces exists between objects even in the absence of direct physical contact
den301095 [7]

Answer: TRUST ME I GOT IT WRONG the answer is B

Explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • What is the period of a wave if the wavelength is 100 m and the speed is 200 m/s?
    9·2 answers
  • If you know the amount of the unbalanced force acting upon an object and the mass of the object, using Newton's 2nd Law what cou
    6·2 answers
  • Walter Arfeuille of Belgium lifted a 281.5 kg load off the ground using his teeth. Suppose Arfeuille can hold just three times t
    13·2 answers
  • Calculate the power output of a 1.5 g fly as it walks straight up a windowpane at 2.4 cm/s .
    7·1 answer
  • The posted speed limit on the road heading from your house to school is45 mi/h, which is about 20 m/s. If you live 8 km (8,000 m
    15·2 answers
  • A stack of books rests on a level frictionless surface. A force F acts on the stack, and it accelerates at 3.0 m/s2. A 1.0 kg bo
    14·1 answer
  • A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
    14·1 answer
  • Nc-1 has the same dimension as​
    14·1 answer
  • A graph titled Distance as a Function of Time with horizontal axis time (seconds) and vertical axis distance (meters). A straigh
    13·2 answers
  • A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of 3.30 m/s2. What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!